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Abstract. A new and practical test for determining the solvability of the gen-

eral Pell’s equation x2−Dy2 = n will be offered through proving one necessary
condition and one sufficient condition for this renowned quadratic Diophantine

equation to be solvable in integers. The test involves only prime factorization

and checking of certain simple quadratic residuosity relations. While the neces-
sary condition will be comparatively more straightforward, the sufficient condi-

tion in a form of conditional converse of the former will require algebraic number
theory tools to formulate and analyze. To prove this sufficient condition, the

solvability in question will be transformed into the question of principality of

certain well-designed ideal class in a real quadratic field Q(
√
D) of class number

two.
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1. Introduction

1.1. Research background. The general Pell’s equation is the quadratic Dio-
phantine equation

(1) x2 −Dy2 = n,

where D is a positive integer and n is an integer. It has fascinated numerous mathe-
maticians for millennia since its original form x2−Dy2 = 1 appeared and was studied
in 400 BC, and research on this topic is still very active (e.g. [4] on the negative
Pell’s equation x2−Dy2 = −1). The reader may consult [1] for an up-to-date survey
on quadratic Diophantine equations and the general Pell’s equation in particular.

For any Diophantine equation, the foremost topic is whether it is solvable, and if
it is, how many solutions are there, and how to find some or certain specific or all of
them. Regarding the general Pell’s equation, they are described as the Pell decision
problem and the Pell search problem in [1], Section 4.2, p.62. To name a few of the
plenty of, from classical to modern, existing results about and methods to tackle
the general Pell’s equation, they may include certain bounds that limit the sizes of
potential solutions, after which brute-force search is enabled, also Brahmagupta’s
identity that generates new solvable general Pell’s equation from other solvable ones,
continued fractions method, Lagrange’s reduction method, the Lagrange–Matthews–
Mollin (LMM) method, etc.. Nevertheless, simple and practical tests for determining
its solvability are rather rare — our project is devoted to bridging this deficit, and
can be treated as a novel response to the aforementioned decision problem.

1.2. Our work and paper organization. In Section 2.1, after some basic obser-
vations on the solvability (expressed as Condition R) of the general Pell’s equation,
we will construct two relevant relations (expressed asConditions P andQ) between
D and n that are number theoretic in nature. These two relations will constitute a
necessary condition for the general Pell’s equation to be solvable, as stated in our
first main result Theorem A. In Section 2.2, a minimal amount of algebraic number
theory notions will be collected in order to state our second main result Theorem
B, which is a sufficient condition for the required solvability. Theorem B will be
a conditional converse of Theorem A, and the necessity of the extra assumptions
involved will also be explained.
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In the short Section 3, we will prove Theorem A, painlessly as the needed basic
properties of Conditions P, Q and R would have already been collected in Section
2 during introducing our main results.

To prove the much harder Theorem B, a lot of preparations will be needed.
In this regard, in Section 4, key properties of quadratic residuosity from classical
number theory will be collected in Section 4.1, using which further properties of
Conditions P, Q and R will be produced in Section 4.2. Section 5 will be devoted
to transforming the solvability problem into algebraic number theory terms. For
such purpose, a well-designed ideal class in real quadratic fields will be introduced in
Section 5.1, as well as proving its many fundamental properties. The transformation
will be done in Section 5.2, into the question of principality of this ideal class.

Via the tools developed in Sections 4 and 5, more further properties of Con-
ditions P, Q and R will be derived in Section 6.1. A focused study on the two
main scenarios of Theorem B will be done in Sections 6.1.1 and 6.1.2, producing
two weaker versions of Theorem B. Certain sophisticated modifications on n will
bridge us towards completing a proof of the full Theorem B in Section 6.2.

A couple of final remarks before entering the main body: (i) as far as the solv-
ability of the general Pell’s equation is concerned, we will confine ourselves to an
unspecified fixed .. . . . . . . . . .squarefree D, which will be assumed throughout without losing
any generality as supported by [3], p.41, Exercise 5.1; also, (ii) n will be assumed

.. . . . . . . .nonzero as such case will be trivially solvable. At last, the following notations will
be adopted throughout the paper:

Notation Definition
Z the set of integers
Z∗ the set of nonzero integers
N the set of natural numbers
P the set of prime numbers
Qn the set of quadratic residues modulo n ∈ Z∗

(i.e.
{
m ∈ Z | a2 ≡ m (mod n) for some a ∈ Z

}
)

M the set of moduli for which D is a quadratic residue
(i.e. {n ∈ Z∗ | D ∈ Qn})

2. Our solvability tests for the general Pell’s equation

2.1. A necessary condition motivated by quadratic residuosity. Being the
main concern, we introduce the following shorthand to denote the solvability of the
general Pell’s equation:

.Condition R. (Solvability of general Pell’s equation) For n ∈ Z∗, R(n)
stands for the condition that the general Pell’s equation (1) is solvable.

It is natural to begin with investigating necessary conditions for the solvability
of the general Pell’s equation. If (x, y) = (x0, y0) solves the equation, then taking
modulo D on (1) would leave us with x2

0 ≡ n (mod D), which means that n ∈ QD.
This simple observation has inspired us to formulate the following relation (Q stands
for quadratic residuosity) between D and n in (1):
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.Condition Q. (Quadratic residuosity) For n ∈ Z∗, Q(n) stands for the con-

dition that c(n) ∈ QD, where c is the function to be defined in Definition 2.1.

Definition 2.1. (Modifications of factors) Define

(a) c(−1) := −1,
(b) c(p) := p for p ∈ P with p ∤ D,
(c) c(p) := p− D

p for p ∈ P with p | D, and

(d) c(mn) := c(m)c(n) for m,n ∈ Z∗.

From the definition, the function c can be written explicitly as

(2) c(n) = sgn(n)
∏
p∈P
p∤D

pνp(n)
∏
p∈P
p|D

(
p− D

p

)νp(n)

for n ∈ Z∗,

where νp(n) denotes the p-adic order of n. It is clear then that c(n) = n iff (n,D) = 1.
We have chosen the letter c due to the following immediate property:

Lemma 2.2. (Coprimality between c(n) and D) Suppose n ∈ Z∗. Then,
(c(n), D) = 1.

Proof. Suppose the contrary that there exists q ∈ P such that q | (c(n), D). Then,
it follows from the form of (2) that there exists p ∈ P such that p | D and

(3) q |
(
p− D

p

)
.

If p = q, then (3) becomes p |
(
p− D

p

)
, then we would have p | D

p and then p2 | D,

contradicting that D is squarefree. If p ̸= q, then p, q | D would imply pq | D as
p, q ∈ P, and then q | D

p , with which (3) would imply that q | p, contradicting that

p ̸= q and p, q ∈ P. Therefore, (c(n), D) = 1. □

It is also natural to investigate how the general Pell’s equation (1) with different
n are related. On one hand, it is well-known that Condition R is multiplicative:

Lemma 2.3. (Multiplicativity of Condition R; Brahmagupta’s identity)
Suppose m,n ∈ Z∗. If both of R(m) and R(n) hold, then so does R(mn).

Proof. Since both of R(m) and R(n) hold, there exist x1, y1, x2, y2 ∈ Z such that
x2
1 −Dy21 = m and x2

2 −Dy22 = n. By Brahmagupta’s identity, we have

(4) (x1x2 +Dy1y2)
2 −D(x1y2 + x2y1)

2 = (x2
1 −Dy21)(x

2
2 −Dy22) = mn

thus, (x, y) = (x1x2 + Dy1y2, x1y2 + x2y1) solves x2 − Dy2 = mn, and R(mn)
holds. □

On the other hand, we have observed the following simple situations where Con-
dition R is reducible by squares:

Lemma 2.4. (Reducibility of Condition R by square of prime) Suppose
n ∈ Z∗ and (x, y) = (x0, y0) solves the general Pell’s equation (1) so that R(n)
holds.
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(a) If p ∈ P and p | D, then p2 | n and (x, y) =
(

x0

p , y0

p

)
solves x2 −Dy2 = n

p2

so that R
(

n
p2

)
holds.

(b) If p ∈ P\M and p | n, then p2 | n and (x, y) =
(

x0

p , y0

p

)
solves x2−Dy2 = n

p2

so that R
(

n
p2

)
holds.

(c) If D ≡ 2, 3 (mod 4) and 4 | n, then (x, y) =
(
x0

2 , y0

2

)
solves x2 −Dy2 = n

4

so that R
(
n
4

)
holds.

Proof. It suffices to show that p | x0, y0 for (a) and (b), and that 2 | x0, y0 for (c):

(a) Since p | D, taking modulo p on (1) yields x2
0 ≡ 0 (mod p), so p | x0 as

p ∈ P, and then

(5) p2 | x2
0.

With (5), taking modulo p2 this time on (1) yields Dy20 ≡ 0 (mod p2). Since
D is squarefree, p2 ∤ D, so p | y20 , and then p | y0.

(b) Since p | n, taking modulo p on (1) yields

(6) x2
0 ≡ Dy20 (mod p).

If p ∤ y0, then the inverse y0 (mod p) exists as p ∈ P, and then multiplying
(6) by y0

2, we would have

(x0y0)
2 ≡ Dy20y0

2 = D(y0y0)
2 ≡ D (mod p).

But this means that D ∈ Qp, contradicting that p /∈ M. Therefore,

(7) p | y0.

With (7) and p | n, we have p | (n+Dy20) = x2
0, and then p | x0 as p ∈ P.

(c) Since 4 | n, taking modulo 4 on (1) yields

(8) x2
0 ≡ Dy20 (mod 4).

If x0 is odd, then (8) would cause the following contradiction:

1 ≡ D · 0 or D · 1
= 0 or D

̸≡ 1 (mod 4).

Now knowing that x0 has to be even, if y0 is odd, then (8) would cause
another contradiction: 0 ≡ D · 1 = D ≡ 2 or 3 (mod 4). Hence, both x0

and y0 are even.

□

The reducibility phenomenon, especially that from Lemma 2.4(b), has inspired
us to formulate the following relation (P stands for prime and parity) between D
and n in (1):

.Condition P. (Parity of prime factor) For n ∈ Z∗, P(n) stands for the condi-
tion that the p-adic order νp(n) of n is even for all p ∈ P \M.
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In Section 3, we will prove (not hard indeed) our first main result that Conditions
P and Q are necessary for Condition R:

.Theorem A. (Necessary condition for solvability of general Pell’s equa-
tion) Suppose n ∈ Z∗. If R(n) holds, then so do P(n) and Q(n).

Some general Pell’s equations that have been tested non-solvable by Theorem A
will be tabulated in Section 7 to illustrate the power of our theorem. Next, it is
natural to study whether or to what extent the converse of Theorem A holds. In
Section 2.2, we will introduce the relevant concepts from algebraic number theory
in order to motivate and state our second main result at the end of the section.

2.2. A sufficient condition motivated by ideal class groups of real quadratic
fields. An algebraic number is a zero of a polynomial with coefficients in Z. The
unique polynomial of the least degree with positive leading coefficient satisfied by
an algebraic number is called the minimal polynomial of that algebraic number. An
algebraic integer is an algebraic number with a monic minimal polynomial. For
instance, the algebraic numbers of the form x + y

√
D with x, y ∈ Q, where D is a

squarefree number, form a field Q(
√
D) called real quadratic field. The algebraic

integers in it form a ring called real quadratic ring when D > 0, which is either
Z[
√
D] := {x + y

√
D | x, y ∈ Z} when D = 2, 3 (mod 4) or {x

2 + y
2

√
D | x, y ∈ Z}

when D = 1 (mod 4) ([2], p.106, Section 10.8).
Every ideal I in the ring OK of algebraic integers of an algebraic number field

K must be finitely generated ([2], p.112, Theorem 11.1), i.e. I = (g1, ..., gn) :=
{r1g1 + · · ·+ rngn | r1, ..., rn ∈ OK} for some g1, ..., gn ∈ I. For any two ideals I =
(a1, ..., an) and J = (b1, ..., bm) in OK, their product IJ is defined as the ideal

(a1b1, ..., anb1, a1b2, ..., anb2, ..., a1bm, ..., anbm)

in OK with generators {aibj | i = 1, ..., n, j = 1, ...,m} ([2], p.112, Section 11.2).
Given any ideal I in OK, an equivalence relation ∼ on OK can be constructed by
defining that for any a, b ∈ OK,

(9) a ∼ b if a− b ∈ I.

The norm N(I) of I is defined as the number of equivalence classes of ∼ ([2], p.114,
Section 11.5).

Lemma 2.5. (Norm of ideal) Suppose I,J are ideals in OK.

(a) N(IJ ) = N(I)N(J )
(b) N(I) = 1 iff I = OK
(c) Suppose K = Q(

√
D) and D ≡ 2, 3 (mod 4) so that OK = Z[

√
D]. For any

ideal I = (x+ y
√
D), where x, y ∈ Z, in OK,

(10) N(I) =
∣∣x2 −Dy2

∣∣ .
Proof. (a) See [2], p.115, Theorem 11.3.

(b) N(I) = 1 iff ∼ has exactly one equivalence class, iff a ∼ b for all a, b ∈ OK,
or equivalently

(11) a− b ∈ I for all a, b ∈ OK.
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If (11) is true, then by taking b = 0, we yield OK ⊂ I ⊂ OK. If I = OK, then
(11) becomes a − b ∈ OK for all a, b ∈ OK, which is true by the closedness
of the addition/subtraction in OK.

(c) See [6], p.16, Example following Corollary 2, and p.46, Theorem 22(c).
□

Please take note of how well (10) resembles the left-hand side of the general Pell’s
equation (1). This phenomenon suggests that one may study the general Pell’s

equation through considering Q(
√
D) as we will do for Theorem B, yet, at the cost

of confining to D ≡ 2, 3 (mod 4).
Another equivalence relation ∼ (same notation as above, but shall be distinguish-

able by the context) on the set of all ideals in OK can be constructed by defining
that for any two ideals I and J in OK,

I ∼ J if (a)I = (b)J for some a, b ∈ K \ {0} .

The equivalence classes of ∼ form a group with group operation

[I][J ] = [IJ ]

and identity element [OK], which is called the principal ideal class as it consists
of all the principal ideals (ideals with a single generator) in OK. This group is called
the ideal class group of K ([2], p.112 and 126, Theorem 11.2 and Section 12.3).
The class number hK of K is defined as its order, which must be finite ([2], p.127,
Theorem 12.4). It is customary to use the shorthand hD for the class numbers of

Q(
√
D).

Indeed, there were clues that the general Pell’s equation has connections with
(the class number of) Q(

√
D) ([1], p.88, Theorem 4.5.5; see also [5]). We will study

the general Pell’s equation when hD = 2 as assumed in Theorem B as in such case
Q(

√
D) will possess simple structures:

Lemma 2.6. (Class number two: principality, ideal equivalence) Suppose
hK = 2, and I,J are ideals in OK.

(a) J 2 is principal.
(b) I ∼ J iff IJ is principal.

Proof. (a) See [2], p.127, Theorem 12.4.
(b) If I ∼ J , then multiplying J to both sides, we have IJ ∼ J 2, showing the

IJ is principal as J 2 is by Lemma 2.6(a). If IJ is principal, then IJ ∼ J 2

as J 2 is principal by Lemma 2.6(a), and then multiplying J to both sides,
we have IJ 2 ∼ J 3, which reduces to I ∼ J as again J 2 is principal by
Lemma 2.6(a).

□

In the end, we formulated our second main result as below, and managed to prove
it in Section 6, after plenty of preparations in Sections 4 and 5:

.Theorem B. (Sufficient condition for solvability of general Pell’s equation;
conditional converse of Theorem A) Suppose n ∈ Z∗, hD = 2 and D ≡ 2, 3
(mod 4). Assume that D also satisfies either
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(i) R(−1) holds (i.e. the negative Pell’s equation is solvable) or
(ii) Q(−1) does not hold (i.e. −1 is a quadratic non-residue modulo D).

If both P(n) and Q(n) hold, then so does R(n).

The class number assumption hD = 2 is necessary, as we have found counter-
examples (not shown here) for the theorem when the class number is greater. As
remarked after Lemma 2.5, D ≡ 2, 3 (mod 4) is unavoidable for our technique to
work. The further assumptions (i) and (ii) will not join our discussion before Section
6. Despite these extra assumptions, it seems that Theorem B would still be appli-
cable to a majority of D with hD = 2 as the following lists of D ≤ 100 (extracted
from OEIS A029702 [8], A031396 [9] and A192450 [10] respectively) suggest. In the
lists, D satisfying hD = 2 and either (i) or (ii) are underlined, and non-squarefree
D not satisfying D ≡ 2, 3 (mod 4) are crossed out:

• hD = 2: 10, 15, 26, 30, 34, 35, 39, 42, 51, 55, 58,��65, 66, 70, 74, 78,��85, 87,
91, 95, ...

• R(−1) holds: �1, 2, �5, 10, ��13, ��17, 26, ��29, ��37, ��41, 50, ��53, 58, ��61, ��65, ��73, 74,
82,��85,��89,��97, ...

• Q(−1) does not hold: 3, �4, 6, 7, �8, �9, 11,��12, 14, 15,��16, 18, 19,��20,��21, 22,
23,��24, 27,��28, 30, 31,��32,��33, 35,��36, 38, 39,��40, 42, 43,��44,��45, 46, 47,��48,��49,
51,��52, 54, 55,��56,��57, 59,��60, 62, 63,��64, 66, 67,��68,��69, 70, 71,��72, 75,��76,��77,
78, 79,��80,��81, 83,��84, 86, 87,��88, 90, 91,��92,��93, 94, 95,��96, 98, 99,��100, ...

Some general Pell’s equations that have been tested solvable by Theorem B will
be tabulated in Section 7 to illustrate the power of our theorem.

3. Proof of Theorem A

Here we state our first main result again and prove:

.Theorem A. (Necessary condition for solvability of general Pell’s equa-
tion) Suppose n ∈ Z∗. If R(n) holds, then so do P(n) and Q(n).

Proof. Assume that R(n) holds.
To prove that P(n) holds, suppose the contrary that there exist p ∈ P \ M and

k ∈ N such that νp(n) = 2k − 1, i.e. n = p2k−1n′ with n′ ∈ Z∗ and p ∤ n′. Since
p ∈ P\M, beginning with that R(n) holds, Lemma 2.4(b) can be applied k−1 times
to obtain the following sequence:

R
(
p2k−1n′) holds ⇒ R

(
p2k−3n′) holds

⇒ R
(
p2k−5n′) holds ⇒ · · · ⇒ R(pn′) holds.

Applying Lemma 2.4(b) once more would yield p2 | pn′ or p | n′, which contradicts
that p ∤ n′. Thus, P(n) holds.

We move on to prove that Q(n) also holds. To this end, we will derive that
R(c(n)) holds first. If (n,D) = 1, then c(n) = n and we are done. If (n,D) > 1,
write n = (n,D)n′ and (n,D) =

∏m
i=1 p

ei
i , where m ∈ N, pi ∈ P and ei ∈ N for all i.

Since (n′, D) = 1 and all pi | D, by using (2), we have

(12) n

m∏
i=1

(p2i −D)ei = n′
m∏
i=1

peii (p2i −D)ei = n′
m∏
i=1

p2eii

(
pi −

D

pi

)ei

= c(n)

m∏
i=1

p2eii .
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Besides thatR(n) holds, allR
(
p2i −D

)
also hold as (x, y) = (pi, 1) solves x

2−Dy2 =

p2i −D, thus by using Lemma 2.3 with (12), we have

both R(n) and all R
(
p2i −D

)
hold

⇒ R

(
n

m∏
i=1

(p2i −D)ei

)
holds ⇒ R

(
c(n)

m∏
i=1

p2eii

)
holds.

Moreover, since all pi | D, removing squares of primes by using Lemma 2.4(a), we
obtain the desired conclusion that R(c(n)) holds. With that R(c(n)) holds, there
exist x0, y0 ∈ Z such that x2

0 − Dy20 = c(n). Taking modulo D yields x2
0 ≡ c(n)

(mod D), thus c(n) ∈ QD, and Q(n) holds. □

4. Classical Number Theory for Proving Theorem B

4.1. Key properties of quadratic residuosity.

Lemma 4.1. (Product of moduli) Suppose m,n ∈ Z∗ and a ∈ Z. Then,

(a) if a ∈ Qmn, then a ∈ Qm,Qn; and
(b) if a ∈ Qm,Qn and (m,n) = 1, then a ∈ Qmn.

Proof. (a) If a ∈ Qmn with a ≡ r2 (mod mn) for some r ∈ Z, then a ≡ r2

(mod m,n) so that a ∈ Qm and a ∈ Qn.
(b) Suppose a ∈ Qm,Qn with a ≡ r2 (mod m) and a ≡ s2 (mod n) for some

r, s ∈ Z. Since (m,n) = 1, by the Chinese remainder theorem, t ≡ r
(mod m) and t ≡ s (mod n) for some t ∈ Z. Then, t2 ≡ r2 ≡ a (mod m)
and t2 ≡ s2 ≡ a (mod n), and then t2 ≡ a (mod mn) as (m,n) = 1, so that
a ∈ Qmn.

□

Lemma 4.2. (Products of quadratic residues and non-residues) Suppose
n ∈ Z∗ and a, b ∈ Z.

(a) If a, b ∈ Qn, then ab ∈ Qn.
(b) If a ∈ Qn and (a, n) = 1, then

(i) the inverse a ∈ Qn, and
(ii) if ab ∈ Qn, then b ∈ Qn.

(c) If ab ∈ Qn and (a, n) = (b, n) = 1, then either a, b ∈ Qn or a, b ̸∈ Qn.
(d) Suppose (a, n) = (b, n) = 1. Among a, b and ab, if any two of them are in

Qn, then so is the third one.

Proof. (a) If a, b ∈ Qn with a ≡ r2 (mod n) and b ≡ s2 (mod n) for some
r, s ∈ Z, then ab ≡ (rs)2 (mod n) so that and ab ∈ Qn.

(b)(i) a (mod n) exists as (a, n) = 1. If a ∈ Qn with a ≡ r2 (mod n) for some
r ∈ Z, then a ≡ a(aa) ≡ a2r2 = (ar)2 (mod n) so that a ∈ Qn.

(b)(ii) If ab ∈ Qn, then b ≡ (aa)b = a · ab ∈ Qn by using Lemma 4.2(a) and (b)(i).
(c) The contrary, without loss of generality, that a ∈ Qn but b /∈ Qn contradicts

Lemma 4.2(b)(ii) immediately.
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(d) If a, b ∈ Qn, then it follows from Lemma 4.2(a) that ab ∈ Qn. If, without
loss of generality, a, ab ∈ Qn, then it follows from Lemma 4.2(b)(ii) that
b ∈ Qn.

□

Lemma 4.3. (Square roots modulo power of prime) Suppose p ∈ P, p ̸= 2,
k ∈ N and a, b ∈ Z. If a2 ≡ b2 (mod pk) and p ∤ a or b, then a ≡ ±b (mod pk).

Proof. Suppose the contrary that a2 ≡ b2 (mod pk) but a ̸≡ ±b (mod pk), i.e.
pk | (a2 − b2) = (a+ b)(a− b) and pk ∤ (a± b), then

νp(a± b) < k ≤ νp(a
2 − b2) = νp(a+ b) + νp(a− b),

thus νp(a±b) > 0 so that p | (a±b). This would imply that p | (a+b)±(a−b) = 2a, 2b,
and then p | a, b as p ̸= 2, which contradicts our assumptions. □

Lemma 4.4. (Number of quadratic residues modulo power of prime) Sup-
pose that p ∈ P, p ̸= 2 and k ∈ N. Then, the set

(13) S =
{
n ∈ Qpk | 0 ≤ n < pk, p ∤ n

}
has size (p−1)pk−1

2 .

Proof. In this proof, let r(n) denote the remainder when dividing n ∈ N ∪ {0} by
pk. We prove that S = S′ where

S′ =

{
r(m2) | 0 ≤ m <

pk

2
, p ∤ m ∈ Z

}
,

and count its elements.
It is clear from construction that S′ ⊂ S. To prove the reversed inclusion, suppose

n ∈ S with s2 ≡ n (mod pk) for some s ∈ N∪{0}. First, note that pk−r(s), r(s) ≥ 0.

Second, since p ̸= 2 so that pk

2 /∈ Z, we have r(s) ̸= pk

2 , then it follows that

m = min
{
pk − r(s), r(s)

}
< pk

2 . Moreover, since r(s)− pk ≡ r(s) ≡ s (mod pk), we
have

(pk − r(s))2 ≡ r(s)2 ≡ s2 ≡ n (mod pk).

As a result, n = r(m2) ∈ S′.
It remains to count the elements of S′. Indeed, if r(m2

1) = r(m2
2) where 0 ≤

m1,m2 < pk

2 and p ∤ m1,m2 ∈ Z, then m2
1 ≡ m2

2 (mod pk), and then by Lemma

4.3, m1 ≡ ±m2 (mod pk), and this would force m1 = m2 as 0 ≤ m1,m2 < pk

2 < pk.
Therefore, different elements of S′ correspond to different m, and then

|S| = |S′| =
∣∣∣∣{m | 0 ≤ m <

pk

2
, p ∤ m ∈ Z

}∣∣∣∣
=

∣∣∣∣{m | 1 ≤ m ≤ pk − 1

2
, p ∤ m ∈ Z

}∣∣∣∣
=

pk − 1

2
−
⌊
pk − 1

2
Ivp

⌋
=

(p− 1)pk−1

2

as the floor function term =
⌊
pk−1−1

2 + p−1
2p

⌋
= pk−1−1

2 . □
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Lemma 4.5. (Quadratic residuosity modulo power of prime) Suppose p ∈
P, p ̸= 2, k ∈ N and p ∤ a ∈ Z. Then, a ∈ Qp iff a ∈ Qpk .

Proof. The if part follows from Lemma 4.1(a). For the only if part, we shall show
from (13) that S = S′′ where

S′′ =
{
n ∈ Qp | 0 ≤ n < pk, p ∤ n

}
.

It is clear from construction that S ⊂ S′′, so it suffices to show that |S| = |S′′|.
Indeed, partitioning S′′ into equal intervals, we have

|S′′| =

∣∣∣∣∣∣
pk−1⊔
i=1

{n ∈ Qp | (i− 1)p ≤ n < ip, p ∤ n}

∣∣∣∣∣∣
=

pk−1∑
i=1

|{n ∈ Qp | 0 ≤ n < p, p ∤ n}|

=

pk−1∑
i=1

p− 1

2
(Lemma 4.4 with k = 1)

=
p− 1

2
· pk−1 = |S|

□

4.2. Further properties of Conditions P, Q and R.

Lemma 4.6. (Conditions P(m), P(n) and P(mn)) Suppose m,n ∈ Z∗. If
any two of P(m) ,P(n) and P(mn) hold, then so does the third one.

Proof. Suppose the contrary, then there exists p ∈ P \ M such that exactly one of
νp(m), νp(n) and νp(mn) is odd, but then the parities of the terms in νp(m)+νp(n) =
νp(mn) would become inconsistent.

□

Lemma 4.7. (Conditions Q(m), Q(n) and Q(mn)) Suppose m,n ∈ Z∗. If
any two of Q(m) ,Q(n) and Q(mn) hold, then so does the third one.

Proof. By definition, these three conditions are equivalent to c(m) ∈ QD, c(n) ∈ QD

and c(mn) ∈ QD respectively. Since (c(m), D) = (c(n), D) = 1 by Lemma 2.2, the
required result follows from replacing n by D and taking a = c(m) and b = c(n) in
Lemma 4.2(d). □

Lemma 4.8. (Square factors vs Conditions P, Q and R) Suppose n, n′, r ∈
Z∗ and n = r2n′.

(a) P(n) holds iff P(n′) holds.
(b) Q(n) holds iff Q(n′) holds.
(c) If R(n′) holds, then so does R(n).
(d) Suppose

(i) r ∈ P \M or
(ii) r ∈ P, r | 2D and D ≡ 2 or 3 (mod 4).
If R(n) holds, then so does R(n′).
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Proof. (a) It is trivial from definition that P
(
r2
)
holds. Then, apply Lemma

4.6 with m = r2.
(b) It is trivial with Definition 2.1 that c(r2) = c(r)2 ∈ QD so that Q

(
r2
)
holds.

Then, apply Lemma 4.7 with m = r2.
(c) It is trivial that R

(
r2
)
holds with (x, y) = (r, 0) solving x2 − Dy2 = r2.

Then, apply Lemma 2.3 with m = r2 and n = n′.
(d)(i) Exactly Lemma 2.4(b).
(d)(ii) If r = 2, apply Lemma 2.4(c); if not, we have r | D, then apply Lemma

2.4(a) with p = r.
□

Lemma 4.8(d) has motivated us to define the following function s:

Definition 4.9. (Removal of special square factors) For

n =
∏
i

p2ai+bi
i

∏
j

q
cj
j ∈ N,

where

• pi ∈ P \M or pi | 2D,
• qj ∈ P ∩M and qj ∤ 2D and
• ai, cj ∈ N ∪ {0} and bi = 0, 1,

define

s(n) :=
∏
i

pbii
∏
j

q
cj
j ∈ N.

An important property of s(n) related to Condition P will be proved in Lemma
5.7(b).

5. Algebraic Number Theory for Proving Theorem B

From now on, we will assume D ≡ 2, 3 (mod 4) in order that we can take K =

Q(
√
D) and OK = Z[

√
D], and incorporate these real quadratic fields and real

quadratic rings into our study. Also recall that M = {n ∈ Z∗ | D ∈ Qn} consists
of all moduli for which D is a quadratic residue. There are two points to note in
advance about M. One is that n ∈ M iff −n ∈ M, so that where appropriate, we
may discuss only the positive integers in M without loss of generality. The other
one is that if n ∈ M and k | n, then k ∈ M as a consquence of Lemma 4.1(a), and
this property will be used frequently and implicitly without being emphasized.

This section is devoted to proving various properties of the following special ideals
which will be crucial in proving Theorem B:

Definition 5.1. (Ideal In,k) Suppose D ≡ 2, 3 (mod 4). For n ∈ M and k ∈ Z
with n | (k2 −D), define

In,k := (n, k +
√
D) =

{
αn+ β(k +

√
D) | α, β ∈ OK

}
which is an ideal in OK.
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Lemma 5.2. (Ideal multiplication) Suppose D ≡ 2, 3 (mod 4), a, b ∈ M, k ∈ Z
with a, b | (k2 −D). If (a, b) = 1, then Ia,kIb,k = Iab,k.

Proof. Since a, b | (k2−D) and (a, b) = 1, we have ab | (k2−D) so that ab ∈ M and
Iab,k is also well-defined. On one hand, observe that each generator of

Ia,kIb,k = (a, k +
√
D)(b, k +

√
D)

= (ab, b︸︷︷︸
∈OK

(k +
√
D), a︸︷︷︸

∈OK

(k +
√
D), (k +

√
D)︸ ︷︷ ︸

∈OK

(k +
√
D))

lies in Iab,k = (ab, k+
√
D), thus Ia,kIb,k ⊂ Iab,k. On the other hand, since (a, b) = 1,

we have αa+ βb = 1 for some α, β ∈ Z, then the second generator of Iab,k
k +

√
D = (αa+ βb)(k +

√
D)

= β︸︷︷︸
∈OK

b(k +
√
D) + α︸︷︷︸

∈OK

a(k +
√
D) ∈ Ia,kIb,k,

thus Ia,kIb,k ⊃ Iab,k. □

Lemma 5.3. (Ideal multiplication) Suppose D ≡ 2, 3 (mod 4), n ∈ M and
r ∈ N. If (n, 2D) = 1, then

(a) nr ∈ M, and
(b) Inr+1,k = Inr,kIn,k, where k ∈ Z and nr+1 | (k2 −D).

Proof.

(a) Consider the prime factorization n = sgn(n)
∏

i p
ei
i , where pi ∈ P and ei =

νpi
(n) ≥ 1. Since (n, 2D) = 1, we have pi ̸= 2 and pi ∤ D for all i, then we

can apply Lemmas 4.1 and 4.5 where appropriate to obtain

Qn = Qsgn(n)
∏

i p
ei
i

= Qsgn(n)

⋂
i

Qp
ei
i

= Qsgn(n)

⋂
i

Qpi

= Qsgn(n)r
⋂
i

Qp
eir

i
= Qsgn(n)r

∏
i p

eir

i
= Qnr .

Note that the fact Q1 = Q−1 may be needed here. Therefore, n ∈ M iff
nr ∈ M.

(b) Since n, nr, nr+1 | (k2 −D), we have n, nr, nr+1 ∈ M so that In,k, Inr,k and
Inr+1,k are well-defined. On one hand, observe that each generator of

Inr,kIn,k = (nr, k +
√
D)(n, k +

√
D)

= (nr+1, nr︸︷︷︸
∈OK

(k +
√
D), n︸︷︷︸

∈OK

(k +
√
D), (k +

√
D)︸ ︷︷ ︸

∈OK

(k +
√
D))
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lies in Inr+1,k = (nr+1, k +
√
D), thus Inr,kIn,k ⊂ Inr+1,k. On the other

hand, we need to show that the second generator of Inr+1,k, namely k+
√
D,

lies in Inr,kIn,k so that Inr,kIn,k ⊃ Inr+1,k. To this end, write

(14) D = k2 +mnr+1

for some m ∈ Z. Note that (k, n) = 1 as if p | k, n for some p ∈ P, then
by (14) we would have p | D, contradicting that (n, 2D) = 1. Moreover, by
(n, 2D) = 1 again, n must be odd, thus (2k, nr+1) = 1, and

(15) α(2k) + βnr+1 = 1

for some α, β ∈ Z. Then, using (14) and (15), we can derive that

α(k2 +D + 2k
√
D) = α(2k2 +mnr+1 + 2k

√
D)

= 2αk(k +
√
D) + αmnr+1

= (1− βnr+1)(k +
√
D) + αmnr+1

k +
√
D = (−αm+ βk + β

√
D)︸ ︷︷ ︸

∈OK

nr+1 + α︸︷︷︸
∈OK

(k +
√
D)2 ∈ Inr,kIn,k.

□

Lemma 5.4. (Ideal multiplication) Suppose D ≡ 2, 3 (mod 4), a, b ∈ Z∗, ab ∈
M, k ∈ Z with ab | (k2 −D). If (a, 2D) = (b, 2D) = 1, then Ia,kIb,k = Iab,k.

Proof. Consider the prime factorizations a = sgn(a)
∏

i p
ai
i and b = sgn(b)

∏
i p

bi
i

where ai = νpi
(a) and bi = νpi

(b) are allowed to be 0. Since pi, a, b, ab | (k2−D), we
have pi, a, b ∈ M so that Ia,k, Ib,k, Ipi,k, Ipi,k, Ipai

i ,k and I
p
bi
i ,k

are also well-defined.

Then, since (pi, pj) = 1 for i ̸= j, we can apply Lemma 5.2 to obtain

Ia,k = I∏
i p

ai
i ,k =

∏
i

Ipai
i ,k and Ib,k = I∏

i p
bi
i ,k

=
∏
i

I
p
bi
i ,k

.

Moreover, since (a, 2D) = (b, 2D) = 1 so that all (pi, 2D) = 1, by Lemma 5.3, they
will then equal ∏

i

Iai

pi,k
and

∏
i

Ibi
pi,k

respectively. Combining, we have

Ia,kIb,k =
∏
i

Iai

pi,k

∏
i

Ibi
pi,k

=
∏
i

Iai+bi
pi,k

=
∏
i

I
p
ai+bi
i ,k

= Iab,k,

and note that Lemma 5.3 is used once more in the second last step. □

Lemma 5.5. (Ideal norm) Suppose D ≡ 2, 3 (mod 4), n ∈ M, k ∈ Z with
n | (k2 −D). Then, N(In,k) = |n|.
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Proof. Write I = In,k. Recall that N(I) is defined as the number of equivalence
classes of ∼ in OK given by (9).

Indeed, [0], [1], .., [|n|−1] are different equivalence classes. If i, j ∈ {0, 1, ..., |n| − 1}
with i ̸= j, then i ∼ j requires that i− j ∈ I, i.e.

i− j = (a+ b
√
D)n+ (c+ d

√
D)(k +

√
D) for some a, b, c, d ∈ Z

= (an+ ck + dD) + (bn+ c+ dk)
√
D

≡ (ck + dD) + (c+ dk)
√
D (mod |n|)

= ((−dk)k + dD) + 0
√
D (by comparing rational and irrational parts)

= −d(k2 −D) ≡ 0;

however, since − |n| < i− j < |n|, we have |n| ∤ (i− j), thus i ̸∼ j.

Moreover, [0], [1], .., [|n| − 1] are the only equivalence classes. If a + b
√
D ∈ OK

where a, b ∈ Z, then let q ∈ Z and r ∈ {0, 1, ..., |n| − 1} be the quotient and the
remainder respectively when dividing a− bk by |n|, and then

(a+ b
√
D)− r = (a− bk)− r + b(k +

√
D) =

q |n|
n︸︷︷︸

∈OK

n+ b︸︷︷︸
∈OK

(k +
√
D) ∈ I,

so that a+ b
√
D ∼ r. □

Lemma 5.6. (Principality of In,kIn,−k) Suppose n ∈ M, k ∈ Z with n |
(k2 −D). If D ≡ 2, 3 (mod 4), then In,kIn,−k = (n).

Proof. Let k2 −D = ln where l ∈ Z. On one hand,

In,kIn,−k = (n, k +
√
D)(n,−k +

√
D)

= (n2, n(−k +
√
D), n(k +

√
D),−k2 +D)

= ( n︸︷︷︸
∈OK

n, 2k︸︷︷︸
∈OK

n, l︸︷︷︸
∈OK

n, (k +
√
D)︸ ︷︷ ︸

∈OK

n),

where each generator lies in (n), thus In,kIn,−k ⊂ (n). On the other hand, if
(n2, 2kn, ln) = n or (n, 2k, l) = 1, then the generator of (n)

n = α︸︷︷︸
∈OK

n2 + β︸︷︷︸
∈OK

(2kn) + γ︸︷︷︸
∈OK

ln ∈ In,kIn,−k,

for some α, β, γ ∈ Z, so that In,kIn,−k ⊃ (n). To this end, suppose p | n, 2k, l for
some p ∈ P, then p2 | (4k2 − 4ln) = 4D. Recall that D is squarefree, so p2 ∤ D but
p2 | 4, and p = 2. But if p = 2, then 4 = p2 | ln = (k2 −D), and then D ≡ k2 ≡ 0, 1
(mod 4), contradicting the assumption that D ≡ 2, 3 (mod 4). □

Restricting to D ≡ 2, 3 (mod 4) will also enable us to apply Lemma 2.4(c) to
prove a characterization in the prime factors of the elements of M. This will lay
the last step towards the core connection between solvability of the general Pell’s
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equation and principality of ideal classes in Section 5.2, and an important property
of s(n) needed to start the proof of Theorem B in Section 6.2.

Lemma 5.7. (Prime factors of elements of M) Suppose n ∈ Z∗. If D ≡ 2, 3
(mod 4), then:

(a) n ∈ M iff there does not exist any p ∈ P such that
(i) p | n and D ̸∈ Qp, or
(ii) p2 | n and p | 2D.

(b) if P(n) holds, then s(n) ∈ M (see Definition 4.9).

Proof.

(a) For the only if part, let n ∈ M, i.e. D ∈ Qn or rn = k2 − D for some
k, r ∈ Z, and p ∈ P.
(i) If p | n, then by D ∈ Qn and Lemma 4.1(a), we have D ∈ Qp.
(ii) Seeing rn = k2 − D as that (x, y) = (k, 1) solves x2 − Dy2 = rn, we

have R(rn) holds. Suppose p2 | n and p | 2D. No matter p = 2 so that
4 = p2 | n, or p ̸= 2 so that p | D and p2 | n, we will have p2 | rn anyway,
then by Lemma 2.4(c) (using D ≡ 2, 3 (mod 4)) and (a) respectively, in

both cases the lemma would produce an integer solution (x, y) =
(

k
p ,

1
p

)
of x2 −Dy2 = rn

p2 , which is a contradiction.

Hence, there does not exist any p ∈ P satisfying (i) or (ii).
For the if part, suppose n does not have any prime factors satisfying

(i) or (ii), then n can be factorized into two parts as

(16) n =
∏
i

pi︸ ︷︷ ︸
(n,2D)

∏
j

q
ej
j︸ ︷︷ ︸

coprime to 2D

,

where
• pi ∈ P and pi | 2D and
• qj ∈ P, qj ∤ 2D, D ∈ Qqj and ej = νqj (n).

On one hand, since qj ∤ 2D so that qj ̸= 2 and qj ∤ D, it follows from D ∈ Qqj

and Lemma 4.5 that D ∈ Q
q
ej
j
. On the other hand, since pi | 2D, we have

pi = 2 or pi | D. For the first case, by that pi = 2 | D(D − 1), we have
D ≡ D2 (mod pi). For the second case, by that pi | D, we have D ≡ 0 = 02

(mod pi). In both cases, D ∈ Qpi
. As a result, using Lemma 4.1, we have

D ∈
⋂

i Qpi
∩
⋂

j Qq
ej
j

= Qn so that n ∈ M.

(b) If P(n) holds, then we have prime factorization

n = sgn(n)
∏
i

p2ai
i

∏
j

q
bj
j

∏
k

rckk ,

where for each i, pi ∈ P \M and ai ∈ N,
for each j, qj ∈ P ∩ M, qj | 2D, bj = 2dj + ej , dj ∈ N ∪ {0} and

ej = 0, 1, and



SOLVABILITY OF THE GENERAL PELL’S EQUATION 71

for each k, rk ∈ P ∩M, rk ∤ 2D and ck ∈ N,
and then by definition,

s(n) = sgn(n)
∏
j

q
ej
j

∏
k

rckk .

Check that the two conditions in Lemma 5.7(a) fail, so that s(n) ∈ M:
(i) if D /∈ Qp for some p ∈ P, i.e. p /∈ M, then p = pi for some i, and then

p ∤ s(n);
(ii) if p | 2D for some p ∈ P, then p = qi for some j, and then νp(s(n)) =

ej = 0, 1, so that p2 ∤ s(n).
□

Lemma 5.8. (Product of elements of M) Suppose m,n ∈ M. If D ≡ 2, 3
(mod 4), then mn ∈ M iff (m,n, 2D) = 1.

Proof. For the if part, suppose mn ̸∈ M, then by Lemma 5.7(a), there exists p ∈ P
such that

(i) p | mn and D ̸∈ Qp, or
(ii) p2 | mn and p | 2D.

Case (i) would imply that p | m or p | n, thus with D ̸∈ Qp, it contradicts that
m,n ∈ M, and then case (ii) must hold. Since m,n ∈ M and p | 2D, by Lemma
5.7(a) again, p2 ∤ m,n. Now, p2 | mn but p2 ∤ m,n, therefore p | m,n, and then
(m,n, 2D) > 1.

For the only if part, suppose p | m,n, 2D for some p ∈ P, then p2 | mn and p | 2D,
thus by Lemma 5.7(a) again, we would have mn ̸∈ M.

□

The characterization of M in Lemma 5.7(a) enables the following extension of
Lemma 5.4:

Lemma 5.9. (Ideal multiplication) Suppose that a, b ∈ Z∗, ab ∈ M, k ∈ Z with
ab | (k2 −D). If D ≡ 2, 3 (mod 4), then Ia,kIb,k = Iab,k.

Proof. Since a, b, ab | (k2 − D), we have a, b ∈ M so that Ia,k and Ib,k are also
well-defined. By Lemma 5.7(a), we have primer factorizations

a =
∏

pi|2D

pi︸ ︷︷ ︸
a′

∏
qj ∤2D

q
aj

j︸ ︷︷ ︸
a′′

and b =
∏

pi|2D

pi︸ ︷︷ ︸
b′

∏
qj ∤2D

q
bj
j︸ ︷︷ ︸

b′′

,

where a′, b′ | 2D and (a′′, 2D) = (b′′, 2D) = 1. From above, (a′, a′′) = (b′, b′′) = 1,
so by Lemma 5.2,

Ia,k = Ia′,kIa′′,k and Ib,k = Ib′,kIb′′,k.
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Since a′b′ | ab ∈ M so that a′b′ ∈ M, by Lemma 5.8(b), (a′, b′, 2D) = 1; however,
with a′, b′ | 2D, actually we have (a′, b′) = 1, thus by Lemma 5.2,

Ia′,kIb′,k = Ia′b′,k.

Also, since (a′′, 2D) = (b′′, 2D) = 1, by Lemma 5.4,

Ia′′,kIb′′,k = Ia′′b′′,k.

Finally, since a′, b′ | 2D and (a′′b′′, 2D) = 1 so that (a′b′, a′′b′′) = 1, by Lemma 5.2,

Ia′b′,kIa′′b′′,k = Ia′b′a′′b′′,k.

Combining all,

Ia,kIb,k = Ia′,kIa′′,kIb′,kIb′′,k = Ia′b′,kIa′′b′′,k = Ia′b′a′′b′′,k = Iab,k.

□

Introducing the condition hD = 2 will allow us to do a good deal more. In
particular, Lemma 2.6 is an important tool for establishing ideal equivalence. One
important consequence is that we can now show that the ideal class containing In,k
is independent of k.

Lemma 5.10. (Ideal equivalence) Suppose hD = 2, D ≡ 2, 3 (mod 4), n ∈ M
and k1, k2 ∈ Z with n | (k21 −D), (k22 −D). Then, In,k1 ∼ In,k2 .

Proof. If k1, k2 = ±k, then In,k1
In,k2

= In,kIn,−k = (n) is principal, and then by
Lemma 2.6, In,k1

∼ In,k2
.

If n = pr where p ∈ P, r ∈ N and p ∤ 2D, then p ∤ k1, k2, and then by Lemma 4.3,
we have k1 ≡ ±k2 (mod pr), i.e. k1 = mn± k2 for some m ∈ Z. As a result,

In,k1 = (n, k1 +
√
D) = (n,mn± k2 +

√
D) = (n,±k2 +

√
D) = In,±k2

,

and then In,k1
= In,k2

, or by Lemma 5.6, In,k1
In,k2

= In,−k2
In,k2

= (n) is principal.
In the second case, by Lemma 2.6, In,k1 ∼ In,k2 .

If n = pr where p ∈ P, r ∈ N and p | 2D, then by Lemma 5.7(a), r = νp(n) = 1.
If p = 2, then for i = 1, 2, n = p = 2 | ki(ki−1) = (k2i −ki) and n = p = 2 | (k2i −D)
so that n | (ki−D); and if p | D, then for i = 1, 2, n = p | (k2i −D) so that n = p | k2i
and n = p | ki. In both cases, we have n ∈ (k1 − k2) or k1 = mn + k2 for some
m ∈ Z, and then

In,k1
= (n, k1 +

√
D) = (n,mn+ k2 +

√
D) = (n, k2 +

√
D) = In,k2

.

If n =
∏m

i=1 p
ei
i , where pi ∈ P and ei = νpi(n). Then, by Lemma 5.2 and above,

In,k1
=

m∏
i=1

Ipai
i ,k1

∼
m∏
i=1

Ipai
i ,k2

= In,k2 .

□
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Due to Lemma 5.10, the following is well-defined:

Definition 5.11. (Ideal class In) Suppose hD = 2 and D ≡ 2, 3 (mod 4). For
n ∈ M and k ∈ Z with n | (k2 −D), define

In := [In,k]
which is an equivalence class of the ideal equivalence ∼ on OK.

By Definition 5.11 and Lemma 5.9, for mn ∈ M,

Imn = ImIn.

We shall now establish the equivalence between the principality of this ideal class
and a weaker solvability of the general Pell’s equation:

.Condition R±. (Solvability of general Pell’s equation) For n ∈ Z∗, R±(n)
stands for the condition that at least one of R(n) and R(−n) holds.

Lemma 5.12. (Principality of In vs Condition R±) Suppose hD = 2, D ≡
2, 3 (mod 4) and n ∈ M. Then, In is the principal ideal class iff R±(n) holds.

Proof. If In is the principal ideal class, then In,k = (x0 + y0
√
D) for some k ∈ Z

with n | (k2−D) and x0, y0 ∈ Z. Taking norm, we have |n| = N(In,k) =
∣∣x2

0 −Dy20
∣∣

by Lemmas 2.5(c) and 5.5, so that x2
0 −Dy20 = ±n and R±(n) holds.

If R±(n) holds with x2
0−Dy20 = n or −n for some x0, y0 ∈ Z, then let d = (x0, y0),

(x′
0, y

′
0) =

(
x0

d , y0

d

)
and n = d2n′, so that x′2

0 −Dy′20 = n′ or −n′ respectively. Since
(x′

0, y
′
0) = 1, we have ux′

0 + vy′0 = 1 for some u, v ∈ Z. Let k = vx′
0 + Duy′0,

and we will show that In′ = [In′,k] is the principal ideal class. Indeed by (4),
k2−D = (vx′

0+Duy′0)
2−D(ux′

0+vy′0) = (x′2
0 −Dy′20 )(v2−Du2) = ±n′(v2−Du2),

so n′ | (k2 −D) and In′,k is well-defined. Check by expansion that

In′,k = (n′, k +
√
D)

= (±(x′2
0 −Dy′20 ), (x′

0 + y′0
√
D)(v + u

√
D))

= (x′
0 + y′0

√
D)(±(x′

0 − y′0
√
D), v + u

√
D).(17)

Taking norm on both sides of (17), using by Lemmas 2.5(a) and (c) and 5.5, we have

N(In′,k) = N((x′
0 + y′0

√
D))N((±(x′

0 − y′0
√
D), v + u

√
D))

|n′| = |n′|N((±(x′
0 − y′0

√
D), v + u

√
D))

N((±(x′
0 − y′0

√
D), v + u

√
D)) = 1.

By Lemma 2.5(b), (17) becomes In′,k = (x′
0+y′0

√
D)OK = (x′

0+y′0
√
D) is principal,

and In′ is the principal ideal class. Finally, since hD = 2, Id2 = I2d is the principal
ideal class by Lemmas 2.6, thus In = Id2In′ is also the principal ideal class. □
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6. Proof of Theorem B

6.1. Further properties of Conditions P, Q and R±.

Lemma 6.1. (Conditions P, Q and R± preserved under c) Suppose n ∈ Z∗.

(a) P(n) holds iff P(c(n)) holds.
(b) Q(n) holds iff Q(c(n)) holds.
(c) If hD = 2, D ≡ 2, 3 (mod 4) and n ∈ M, then R±(n) holds iff R±(c(n))

holds.

Proof. (a) Suppose

n = sgn(n)
∏
p∈P
p∤D

pνp(n)
∏
q∈P
q|D

qνq(n) and

c(n) = sgn(n)
∏
p∈P
p∤D

pνp(n)
∏
q∈P
q|D

(
q − D

q

)νq(n)

,

so that

c(n)

n
=
∏
q∈P
q|D

(
1− D

q2

)νq(n)

c(n)
∏
q∈P
q|D

(q2)νq(n)

︸ ︷︷ ︸
d(n)

= n
∏
q∈P
q|D

(q2 −D)νq(n)

︸ ︷︷ ︸
e(n)

.(18)

On one hand, P(d(n)) holds trivially as d(n) is a square number. On the
other hand, if r ∈ P \M, then D /∈ Qr, and then r ∤ (q2 −D) for any q ∈ P
with q ∈ D on the right-hand side of (18), so that νr(e(n)) = 0 is even.
With both P(d(n)) and P(e(n)) hold, applying Lemma 4.6 twice, we have
P(c(n)) holds iff P(ne(n)) holds, iff P(n) holds.

(b) Note that c(c(n)) = c(n) as (c(n), D) = 1 by Lemma 2.2. Then, Q(n) holds
iff c(n) ∈ QD, iff c(c(n)) ∈ QD, iff Q(c(n)) holds.

(c) Define σ = 1 if 2 | D and σ = 2 if 2 ∤ D, and g(p) =
(
p− D

p

)
/σ for p ∈ P

with p | D.
First, we show that g(p) is an odd integer. Suppose 2 | D, then

σ = 1, and g(p) = p − D
p is an integer. If p is odd, then D

p will be even

as 2 | D; if p = 2 is even, then D
p = D

2 will be odd, otherwise 4 | D. In

both cases, g(p) is odd. Now suppose 2 ∤ D, then D ≡ 3 (mod 4), σ = 2

and g(p) =
(
p− D

p

)
/2. If p ≡ 1 (mod 4), then D

p ≡ 3 (mod 4); if p ≡ 3

(mod 4), then D
p ≡ 1 (mod 4). In both cases, p − D

p ≡ 2 (mod 4), so g(p)

is once again an odd integer.
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Next, using Lemma 5.7, consider prime factorization

n =

m∏
i=1
pi|D

pi
∏
qj |n
qj ∤D

q
bj
j

︸ ︷︷ ︸
m

.

We show that (g(pi), 2D) = 1. Note that (m,D) = 1, thus

c(n) = c(m)

k∏
i=1

(
pi −

D

pi

)
= m

k∏
i=1

σg(pi).

Then, (g(pi), D) ≤ (σg(pi), D) =
(
pi − D

pi
, D
)
= (c(pi), D) = 1. Plus that

g(pi) is odd, we have (g(pi), 2D) = 1 as claimed.
We will express In as the product of Ic(n)/σk and (Iσ)

k, via working
with Im, Ipi

, Ip2
i−D, Iσg(pi), Ig(pi) and Iσ. Before proceed, we verify that

all of them are well-defined. Indeed, since m, pi | n ∈ M, we have m, pi ∈ M.

Also, since p2i − D = pi

(
pi − D

pi

)
= piσg(pi) and trivially p2i − D ≡ p2i

(mod D), so that g(pi), σg(pi) | (p2i − D) ∈ M, we have g(pi), σg(pi) ∈ M.

Finally, since (g(pi), 2D) = 1 so that
(∏k

i=1 g(pi), 2D
)
= 1, by Lemma 5.8

we have
∏k

i=1 g(pi) ∈ M. Moreover, as
(
m,
∏k

i=1 g(pi), 2D
)
= 1, indeed we

have c(n)/σk = m
∏k

i=1 g(pi) ∈ M by Lemma 5.8 again. Now, noting that

Ip2
i−D = [Ip2

i−D,pi
] = [(p2i−D, pi+

√
D)] = [((pi+

√
D)(pi−

√
D), pi+

√
D)] =

[(pi +
√
D)] is the principal ideal class, we can perform the aforementioned

working:

In = Im

k∏
i=1

Ipi

= Im

k∏
i=1

(
Ipi

(
Iσg(pi)

)2)
,
(
Iσg(pi)

)2
is the principal ideal class by Lemma 2.6

= Im

k∏
i=1

(
Ip2

i−DIσIg(pi)

)
, applying Lemma 5.7

= Im

k∏
i=1

IσIg(pi), Ip2
i−D is the principal ideal class

= Ic(n)/σk(Iσ)
k

With this, we can actually find ℓ ∈ N ∪ {0} such that c(n)/22ℓ ∈ M and
In = Ic(n)/22ℓ :

• Suppose σ = 1, then with ℓ = 0, we have c(n)/22ℓ = c(n)/σk ∈ M and
In = Ic(n)/σk(Iσ)

k = Ic(n)/22ℓ .
• Suppose σ = 2:
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– If k is even, then with ℓ = k/2, we have c(n)/22ℓ = c(n)/σk ∈ M
and

In = Ic(n)/σk(Iσ)
k = Ic(n)/22ℓ .

– If k is odd, we have two more cases:
∗ Suppose c(n)/2k is odd, we can take ℓ = (k − 1)/2, then
c(n)/22ℓ = 2(c(n)/2k) ∈ M and

In = Ic(n)/2kIσ(Iσ)
2ℓ = Ic(n)/22ℓ .

∗ Suppose c(n)/2k is even, we can take ℓ = (k + 1)/2, then
c(n)/22ℓ = 2(c(n)/2k) ∈ M and

In = Ic(n)/2k(Iσ)
2ℓ−1 = Ic(n)/22ℓ(Iσ)

2ℓ = Ic(n)/22ℓ .

As a result, we will have, using Lemma 5.12, R±(n) holds iff In is principal,
iff Ic(n)/22ℓ is principal, iff R±(c(n)/22ℓ) holds, and then by Lemma 4.8, iff

R±(c(n)) holds.
□

Here we collect some properties of the Legendre and the Jacobi symbols which
will be used to prove two weaker versions of Theorem B in the next sections:

(a) For a ∈ Z and odd p ∈ P,(
a

p

)
:=

0 for a ≡ 0 (mod p)
1 for a ̸≡ 0 (mod p) and a ∈ Qp

−1 for a ̸≡ 0 (mod p) and a /∈ Qp

(b) For a ∈ Z and odd n ∈ N with prime factorization n =
∏k

i=1 p
ei
i ,(a

n

)
:=

k∏
i=1

(
a

pi

)ei

.

Lemma 6.2. (Properties of Legendre and Jacobi symbols)

(a) (Multiplicativity) Suppose a, b ∈ Z and m,n ∈ N are odd:
(i)

(
ab
n

)
=
(
a
n

) (
b
n

)
(ii)

(
a

mn

)
=
(

a
m

) (
a
n

)
(b) (Prime denominator) Suppose p ∈ P is odd:

(i)
(

−1
p

)
= 1 if p ≡ 1 (mod 4)

(ii)
(

2
p

)
= −1 if p ≡ ±3 (mod 8)

(c) (Coprimality) Suppose a ∈ Z and n ∈ N is odd:
(i) If

(
a
n

)
= 0, then (a, n) > 1.

(ii) If
(
a
n

)
= ±1, then (a, n) = 1.

(d) (Quadratic residuosity) Suppose a ∈ Z, n ∈ N is odd and p ∈ P is odd:
(i) If

(
a
n

)
= −1, then a ̸∈ Qn.

(ii) If
(

a
p

)
= 1, then a ̸∈ Qp.
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(e) (Law of quadratic reciprocity) Suppose m,n ∈ N are odd and (m,n) =
1. Then,(m

n

)( n

m

)
= (−1)

m−1
2 ·n−1

2 =

{
1 if m or n ≡ 1 (mod 4)
−1 if m ≡ n ≡ 3 (mod 4)

(f) Suppose k ∈ N is odd and squarefree with k ≥ 3. Then, there exists r ∈ Z∗

such that
(
r
k

)
= −1.

Proof. For part (f), let p ∈ P and p | k. Then p ≥ 3 as well, there exists quadratic

non-residue a modulo p, i.e. a ̸∈ Qp, and
(

a
p

)
= −1. We can then apply the Chinese

remainder theorem to take r ≡ a (mod p) and r ≡ 1 (mod k/p); this is possible as

(p, k/p) = 1 by k squarefree. Then we have
(
r
k

)
=
(

a
p

)(
1

k/p

)
= (−1)(1) = −1. □

We now proceed to prove further properties of P, Q and R± under assumptions
(i) R(−1) holds and (ii) Q(−1) does not hold respectively in Theorem B. The
treatments for these two cases in Sections 6.1.1 and 6.1.2 are similar and just slightly
different.

6.1.1. When R(−1) holds.

Lemma 6.3. (Condition P vs Condition Q) Suppose hD = 2 and D ≡ 2, 3
(mod 4). Assume that D also satisfies that R(−1) holds. For any n ∈ Z∗, there
exists p ∈ P such that p ∤ D,n, and P(p) holds but Q(p) does not.

Proof. Suppose that D ≡ 3 (mod 4). Since R(−1) holds, x2
0 −Dy20 = −1 for some

x0, y0 ∈ Z. Taking modulo 4, we would obtain a contradiction that 3 ≡ x2
0 −Dy20 ≡

x2
0 + y20 ≡ 0, 1, 2 (mod 4). Thus, D ≡ 2 (mod 4).
Let D = 2k, where k ≥ 5 (check from the number lists following the statement of

Theorem B at the end of Section 1 that D ≥ 10 as hD = 2) is odd and squarefree
(as D is), and k ≡ ±1 (mod 4). Pick any r ∈ Z such that

(
r
k

)
= −1 by Lemma

6.2(f). By the Chinese remainder theorem, there exists m ∈ Z such that{
x ≡ ±3 (mod 8) (± here corresponds to k ≡ ±1 (mod 4) resp.)
x ≡ r (mod k)

for all x = m + 8kt where t ∈ Z. Note that m ≡ ±3 ̸≡ 0 (mod 2, 4, 8), and that
m ≡ r (mod k) and

(
r
k

)
= −1 so that (m, k) = (r, k) = 1 by Lemma 6.2(c). Thus,

(m, 8k) = 1, and then we can apply Dirichlet’s theorem on arithmetic progressions
to pick a sufficiently large p ∈ P of the form m + 8kt such that p > D, n so that
p ∤ D,n.

To show that Q(p) does not hold, recall that p ∤ D and p ≡ r (mod k), so(
c(p)

k

)
=
(p
k

)
=
( r
k

)
= −1,

and then by Lemmas 6.2(d) and 4.1(a), we have c(p) ̸∈ Qk and then c(p) ̸∈ QD as
k | D.
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To show that P(p) holds, recall that
(
p
k

)
= −1 so that (p, k) = 1 by Lemma

6.2(c). Then, we can apply Lemma 6.2(a), (b) and (e) to obtain(
D

p

)
=

(
2

p

)(
k

p

)
= (−1)(−1)

k−1
2 · p−1

2

(p
k

)
= (−1)(1)(−1) = 1,

which infers through Lemma 6.2(d) that D ∈ Qp so that νq(p) is even for all q ∈
P \M. □

Lemma 6.4. (Weak version one of Theorem B) Suppose hD = 2, D ≡ 2, 3
(mod 4), n ∈ M and (n,D) = 1. Assume that D also satisfies that R(−1) holds. If
both P(n) and Q(n) hold, then so does R±(n).

Proof. When R(−1) holds, by Lemma 2.3, R(n) holds iff R(−n) holds. Moreover,
by Theorem A, Q(−1) also holds, then by Lemma 4.7, for any m ∈ Z∗, Q(m) holds
iff Q(−m) holds.

Suppose the contrary that both P(n) and Q(n) hold but R±(n) does not. Con-
sidering p ∈ P picked from Lemma 6.3, with Lemma 4.6, we would have:

• P(n), P(p) and P(pn) hold,
• Q(n) holds but Q(p) does not,
• R±(n) does not hold, and
• R±(p) does not hold as that at least one of Q(p) and Q(−p) hold is a
necessary condition according to Theorem A, but both of them do not hold
here.

As a result, by Lemma 5.12, both In and Ip would be the non-principal ideal class,
but then by Lemma 2.6, Inp would be the principal ideal class, and then by Lemma
5.12 again, R±(np) would hold, and then at least one of Q(np) and Q(−np) would
hold as implied by Theorem A. Yet, Q(n) holds but Q(p) and Q(−p) do not, so
Lemma 4.7 would imply that Q(np) and Q(−np) do not hold. Thus, there is a
contradiction. □

6.1.2. When Q(−1) does not hold.

Lemma 6.5. (Corollary of theorem of Gauss) Suppose hD = 2 and D ≡ 2, 3
(mod 4). If q | D for some q ∈ P with q ≡ 3 (mod 4), then 4D has at least 3 distinct
prime factors.

Proof. The proof follows from realizing that as hD = 2, there are more than one
ideal class I such that I2 = [(1)], so that on applying the theorem of Gauss in [7],
Theorem 3.70, one will have 2N−2 ≥ 2, where N is the number of distinct prime
factors of 4D. □

Lemma 6.6. (Condition P vs Condition Q) Suppose hD = 2 and D ≡ 2, 3
(mod 4). Assume that D also satisfies that Q(−1) does not hold. For any n ∈ Z∗,
there exists p ∈ P such that p ∤ D,n, and P(p) holds but both Q(p) and Q(−p) do
not.

Proof. Since Q(−1) does not hold, −1 ̸∈ QD, and we can use it to deduce that q | D
for some q ∈ P and q ≡ 3 (mod 4). Suppose the contrary that D =

∏k
i=1 pi for some

pi ∈ P where pi = 2 or pi ≡ 1 (mod 4). Then, by Lemma 6.2(b) and (d), a2i ≡ −1
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(mod pi) for some ai ∈ Z. By the Chinese remainder theorem, a ≡ ai (mod pi) for
some a ∈ Z, then a2 ≡ a2i ≡ −1 (mod pi), and then a2 ≡ −1 (mod D), getting a
contradiction that −1 ∈ QD.

Now, q ∈ P, q ≡ 3 (mod 4) and q | D, so by Lemma 6.5, 4D has at least three
distinct prime factors, so that 4D = 4qk for some k ∈ N where k ̸= 1, 2l, ql for all
l ∈ N. We have two cases to consider, namely D = qk is even and odd.

If D = qk is even, then k is even, indeed k ≥ 6, and then D = 2qk′ where
k′ = k

2 ≥ 3. Pick any r ∈ Z such that
(

r
k′

)
= −1 by Lemma 6.2(f). By the Chinese

remainder theorem, there exists m ∈ Z such thatx ≡ 5 (mod 8)
x ≡ 1 (mod q)
x ≡ r (mod k′)

for all x = m+8qk′t where t ∈ Z. Note thatm ≡ 5 ̸≡ 0 (mod 2, 4, 8), thatm ≡ 1 ̸≡ 0
(mod q), and that m ≡ r (mod k′) and

(
r
k′

)
= −1 so that (m, k′) = (r, k′) = 1 by

Lemma 6.2(c). Thus, (m, 8qk′) = 1, and then we can apply Dirichlet’s theorem on
arithmetic progressions to pick a sufficiently large p ∈ P of the form m+ 8qk′t such
that p > D, n so that p ∤ D,n.

To show that Q(p) does not hold, recall that p ∤ D and p ≡ r (mod k′), so(
c(p)

k′

)
=
( p

k′

)
=
( r

k′

)
= −1,

and then by Lemma 6.2(d) and Lemma 4.1(a), we have c(p) ̸∈ Qk′ and then c(p) ̸∈
QD as k′ | D.

To show that Q(−p) does not hold, recall that c(−p) = −p ≡ −1 (mod q). But(
−1
q

)
= −1 by q ≡ 3 (mod 4) and Lemma 6.2(b), so by Lemmas 6.2(d) and 4.1(a),

we have −1 /∈ Qq and c(−p) ̸∈ Qq and then c(−p) ̸∈ QD as q | D.
To show that P(p) holds, recall that

(
p
k′

)
= −1 so that (p, k′) = 1 by Lemma

6.2(c). Then, we can apply Lemma 6.2(a), (b) and (e) to obtain(
D

p

)
=

(
2

p

)(
q

p

)(
k′

p

)
= (−1)(−1)

q−1
2 · p−1

2

(
p

q

)
(−1)

k′−1
2 · p−1

2

( p

k′

)
= (−1)(1)(−1) = 1,

which infers through Lemma 6.2(d) that D ∈ Qp so that νq(p) = 0 is even for all
q ∈ P \M.

If D = qk is odd, then k is odd and k ≥ 3.
Pick any r ∈ Z such that

(
r
k′

)
= −1 by Lemma 6.2(f). By the Chinese remainder

theorem, there exists m ∈ Z such thatx ≡ 3 (mod 4)
x ≡ 1 (mod q)
x ≡ r (mod k)

for all x = m+ 4qkt where t ∈ Z. Note that m ≡ 3 ̸≡ 0 (mod 2, 4), that m ≡ 1 ̸≡ 0
(mod q), and that m ≡ r (mod k) and

(
r
k

)
= −1 so that (m, k) = (r, k) = 1 by

Lemma 6.2(c). Thus, (m, 4qk) = 1, and then we can apply Dirichlet’s theorem on
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arithmetic progressions to pick a sufficiently large p ∈ P of the form m+ 4qkt such
that p > D, n so that p ∤ D,n.

To show that Q(p) does not hold, recall that p ∤ D and p ≡ r (mod k), so(
c(p)

k

)
=
(p
k

)
=
( r
k

)
= −1,

and then by Lemma 6.2(d) and Lemma 4.1(a), we have c(p) ̸∈ Qk and then c(p) ̸∈
QD as k | D.

To show that Q(−p) does not hold, recall that c(−p) = −p ≡ −1 (mod q). But(
−1
q

)
= −1 by q ≡ 3 (mod 4) and Lemma 6.2(b), so by Lemmas 6.2(d) and 4.1(a),

we have −1 /∈ Qq and c(−p) ̸∈ Qq and then c(−p) ̸∈ QD as q | D.
To show that P(p) holds, recall that

(
p
k

)
= −1 so that (p, k) = 1 by Lemma

6.2(c). Then, we can apply Lemma 6.2(a), (b) and (e) to obtain(
D

p

)
= (−1)

D−1
2 · p−1

2

( p

D

)
= (−1)

(
p

q

)(p
k

)
= (−1)(1)(−1) = 1,

which infers through Lemma 6.2(d) that D ∈ Qp so that νq(p) is even for all q ∈
P \M. □

Lemma 6.7. (Weak version two of Theorem B) Suppose hD = 2, D ≡ 2, 3
(mod 4), n ∈ M and (n,D) = 1. Assume that D also satisfies that Q(−1) does not
hold. If both P(n) and Q(n) hold, then so does R±(n).

Proof. Suppose the contrary that both P(n) and Q(n) hold but R±(n) does not.
Considering p ∈ P picked from Lemma 6.6, with Lemmas 4.6 and 4.7, we would
have:

• P(n), P(p) and P(pn) hold,
• Q(n) holds but Q(−1) and Q(−n) do not,
• Q(p) and Q(−p) do not hold,
• R±(n) does not hold, and
• R±(p) does not hold as that at least one of Q(p) and Q(−p) hold is a
necessary condition according to Theorem A, but both of them do not hold
here.

As a result, by Lemma 5.12, both In and Ip would be the non-principal ideal class,
but then by Lemma 2.6, Inp would be the principal ideal class, and then by Lemma
5.12 again, R±(np) would hold, and then at least one of Q(np) and Q(−np) would
hold as implied by Theorem A. Yet, Q(n) holds but Q(p) and Q(−p) do not, so
Lemma 4.7 would imply that Q(np) and Q(−np) do not hold. Thus, there is a
contradiction. □

6.2. Proof of Theorem B. Here we state our second main result again, for which
we have already prepared sufficient tools to prove:

.Theorem B. (Sufficient condition for solvability of general Pell’s equation;
conditional converse of Theorem A) Suppose n ∈ Z∗, hD = 2 and D ≡ 2, 3
(mod 4). Assume that D also satisfies either

(i) R(−1) holds (i.e. the negative Pell’s equation is solvable) or
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(ii) Q(−1) does not hold (i.e. −1 is a quadratic non-residue modulo D).

If both P(n) and Q(n) hold, then so does R(n).

Proof. When P(n) and P(c(s(n))) hold, by Lemma 5.7(b), we will have
s(n), s(c(s(n)) ∈ M. Also, since s(c(s(n))) | c(s(n)) by definition, with (c(s(n)), D) =
1 by Lemma 2.2, we will have (s(c(s(n))), D) = 1 as well. Then, we have the follow-
ing sequence of implications:

P(n) and Q(n) hold
⇒ P(s(n)) and Q(s(n)) hold (by Lemma 4.8)
⇒ P(c(s(n))) and Q(c(s(n))) hold (by Lemma 6.1)
⇒ P(s(c(s(n)))) and Q(s(c(s(n)))) hold (by Lemma 4.8)
⇒ R±(s(c(s(n)))) holds (by Lemmas 6.4 and 6.7)
⇒ R±(c(s(n))) holds (by Lemma 4.8)
⇒ R±(s(n)) holds (by Lemma 6.1)
⇒ R±(n) holds (by Lemma 4.8)

To complete the proof, consider the two scenarios in the theorem:

(i) Suppose R(−1) holds. By Lemma 2.3, no matter which of R(n) and R(−n)
above holds, so does the other, thus R(n) holds.

(ii) Suppose Q(−1) does not hold. But since Q(n) holds, by Lemma 4.7, Q(−n)
cannot hold, then by Theorem A R(−n) cannot hold as well. Thus R(n)
holds.

□

7. Appendix

This table shows general Pell’s equations that have been tested non-solvable upon
applying Theorem A:

n
D

2 3 5 6 7 10 11 13 14 15 17 19 21 22 23 26 29 30 31 33 34 35 37 38 39

−15 P P P P P P P P Q P P P P Q P P P P Q

−14 P P P P Q P P P Q Q P Q P P P Q Q P

−13 P Q P P P Q P P P P Q Q Q P P P Q P Q

−12 P P Q Q P P Q P Q P P P Q Q Q P P

−11 P P P P P Q P P P Q Q P P Q P Q Q P

−10 P P Q Q P P Q P Q P P Q Q Q P Q P P Q

−9 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

−8 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

−7 P P P P P Q P P Q P Q P P P Q Q P Q

−6 P Q P P Q P P Q Q P P P Q Q Q P Q P Q

−5 P P P Q Q P Q P Q P P Q Q P Q Q P P Q

−4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

−3 P P Q Q P P Q P Q P P P Q Q Q P Q P

−2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

−1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

0

1

2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 P Q P Q Q P P Q P Q Q P P P Q Q Q P Q P Q



82 LAI WAI LOK

n
D

2 3 5 6 7 10 11 13 14 15 17 19 21 22 23 26 29 30 31 33 34 35 37 38 39

4

5 P P Q P Q P Q Q P Q P P Q Q P Q Q P P Q

6 P P Q Q P Q P Q P Q Q P P P Q Q Q P Q P Q

7 P P P Q P Q P Q Q P P Q Q P Q P P P Q Q P Q

8 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9

10 P P Q P Q P Q P Q Q P P Q Q P Q Q P P

11 P Q P P P Q P Q P P P Q Q P P Q Q Q P Q P

12 P Q P Q Q P P Q P Q Q P P P Q Q Q P P Q

13 P P P P Q P Q P P P Q Q Q P P P Q P Q

14 P P P Q P P Q Q P P Q Q P Q Q P P P Q P Q

15 P P P Q P P P P Q P Q P P P P Q Q P P P P Q

16

17 P P P P P P P Q Q P P P Q P Q Q Q P P

18 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 P P Q P Q P P P Q P P Q Q P P P P Q P Q

20 P P Q P Q P Q Q P Q P P Q Q P Q Q P P Q

21 P P P P P P P P P P Q Q P P P Q P P P P P Q

22 P Q P P P P Q P P P Q Q P P Q Q Q P Q Q P

23 Q P Q P P P P P P P P P Q P Q P P Q P P Q

24 P P Q Q P Q P Q P Q Q P P P Q Q Q P Q P Q

25

(P = Condition P fails, Q = Condition Q fails but Condition P holds, blank = both Conditions P

and Q hold)

This table shows general Pell’s equations that have been tested solvable upon
applying Theorem B:

n
D

10 15 26 30 35 39 42 51
−15 R R R
−14 R R R
−13
−12 R
−11 R
−10 R R R
−9 R R
−8 R
−7
−6 R R R
−5 R
−4 R R
−3 R
−2 R
−1 R R
0 R R R R R R R R
1 R R R R R R R R
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n
D

10 15 26 30 35 39 42 51
2
3
4 R R R R R R R R
5
6 R R
7 R
8
9 R R R R R R R R
10 R R R R
11
12
13 R R
14 R
15 R
16 R R R R R R R R
17 R
18
19 R
20
21 R R
22 R R
23 R
24 R R
25 R R R R R R R R

(R = both Conditions P and Q hold = solvable, blank = at least one of Conditions P or Q fails =
non-solvable)
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The main goal of this paper is to give sufficient conditions for the solvability of
the diophantine equation (called the general Pell’s equation), that is to find integers
x, y such that

x2 −Dy2 = n

where n is an integer, D ≡ 2, 3 mod 4, D is square free, and the class number of
Z[
√
D] is 2.
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