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Abstract. In a given acute triangle, the inscribed triangle with minimum

perimeter is the orthic triangle. This problem was proposed and solved using
calculus by Fagnano in 1775.

Now we wonder, will the result remain unchange when the problem is dis-

cussed on a sphere? [See reviewer’s comment (2)] In this paper, we will first
try to find the answer of the “spherical Fagnano’s problem”. Based on our

results in spherical triangle cases, we will go further to generalize the problem
to spherical quadrilateral and n-sided spherical polygon in spherical geometry.

1. Introduction

In Euclidean geometry, Fagnano’s problem is an optimization problem that was
stated by Giovanni Fagnano in 1775: for a given acute triangle, determine the
inscribed triangle with minimal perimeter.

Fagnano solved this question by using calculus and the answer is the orthic trian-
gle. [See reviewer’s comment (3)] Once the answer became known, several purely
geometric solutions were also discovered. In addition, the solution of an obtuse tri-
angle does not exist and it will degenerate to twice of the altitude from the obtuse
angle. [See reviewer’s comment (4)] Using the light reflection principle, the general
problem of finding the shortest perimeter of an inscribed polygon within a polygon
has also been discussed and solved comprehensively.

However, we are living on a sphere where the solution above in Euclidean geometry
is not yet applicable and precise, especially in daily applications within a large
scale. For the sake of enhancing the precision, we are going to discuss this problem
in a new extend, from Euclidean to spherical, from triangle to N-gon.
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Once we started to work on this question, we discovered that spherical geometry
is quite different from our conception of Euclidean geometry. Apart from using
the light reflection principle, we use stereographic projection method, which is able
to project the polygon on a sphere to a 2-dimensional plane with angle preserving
property, to help us solve this problem.

There are four main parts in this paper.

The first part is to introduce some fundamental spherical geometry, which is nec-
essary to solve our problem.

The second part is the solution of spherical triangle problem. We attacked this
problem by dividing the spherical triangles according to the number of obtuse angles
in a triangle. In the case of acute spherical triangle (no obtuse angle), we attained
the same result as in the Euclidean case. The orthic triangle is the triangle with
minimum perimeter inscribed in acute spherical triangle. The other three cases
with obtuse angles have also been proved to admit no solutions, but a degenerated
one.

In the third part, we further discussed the problem in the case of spherical quadri-
laterals. We proved that there is no solution in all kinds of spherical quadrilaterals,
but we found an algorithm to obtain the degenerate solution.

In the last part, we tried to generalize the problem to n-sided spherical polygon.
We found out that the answer is different due to the parity of sides. We proved
that there is no solution in 2n-sided spherical polygon. A solution can be obtained
in a 2n+ 1 -sided spherical polygon iff it is a closed path of light.

2. What about on a sphere?

Figure 2.1

In this project, the sphere we are going to discuss is a unit sphere, and all the
spherical polygons or spherical triangles discussed are having sides and angles in
between 0 and π.
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Definition 1. A great circle is the intersection of a sphere with a plane through
the centre of the sphere, otherwise, it is a small circle.

[See reviewer’s comment (5)]

Remark 2. The geodesic, or the ‘straight line’ joining two points on the sphere is
the great circle joining the points.

Definition 3. As shown in Fig 2.2, the spherical angle N , formed by two great
circless SAN and SBN is defined to be the angle between the planes AON and BON,
i.e. ∠ AOB.

Figure 2.2

Definition 4. A spherical polygon is the portion of a spherical surface bounded by
the arcs of great cirlces. In particular, a spherical triangle is bounded by three arcs
of great circles.

Proposition 5. (Trihedral angle Inequality) The sum of any two face angles of a
trihedral angle is greater than the third face angle.

[See reviewer’s comment (6)]

Proof. Let ∠ZOY = α,∠XOZ = β,∠XOY = γ. WLOG, assume α ≥ β ≥ γ > 0,
obviously, α+ γ > β and α+ β > γ. Hence remains ro prove β + γ > α.
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Figure 2.3

Figure 2.4

Case 1. α = β ≥ γ > 0. Trivial.

Case 2. α > β ≥ γ > 0.

First, randomly choose A,B on OX,OY respectively. Then construct OC on plane
Y OZ such that ∠COZ = β, OC = OA. Extend BC to meet OZ at D. Then by
Euclidean triangle inequality,

AB +AD > BC + CD

Since AD and CD are corresponding sides of congruent triangles 4OAD and
4OCD, then

AB > BC

Also, in 4OAB and 4OCB, OA = OC, [See reviewer’s comment (7)] then

∠AOB > ∠COB
γ > α− β

∴ β + γ > α

In Corollary 5 to Proposition 10, we consider the spherical triangle with sides a, b, c,
opposite to ∠A,∠B,∠C respectively.
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Figure 2.5

Corollary 6. Spherical Triangle Inequality In a spherical triangle with sides
a, b and c,

a+ b > c

a+ c > b

b+ c > a

Remark 7. In the sphere, the shortest path between two points is the minor arc of
the great circle passing through that two points.

Proposition 8. In the spherical triangle,

sinA =
sin a

sin c

cosA =
tan b

tan c

tanA =
tan a

sin b

[See reviewer’s comment (8)]
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Proof. As shown in Fig 2.6

sinA =
B′C ′

A′B′
=

B′C ′

OB′
A′B′

OB′

=
sin a

sin c

cosA =
A′C ′

A′B′
=

A′C ′

OA′
A′B′

OA′

=
tan b

tan c

tanA =
B′C ′

A′C ′
=

B′C ′

OC ′
A′C ′

OC ′

=
tan a

sin b

Theorem 9. Spherical Pythagoras Theorem As shown in Fig 2.6,

cos c = cos a cos b

Figure 2.6

Proof. By Prop 8,

sinA =
sin a

sin c

cosA =
tan b

tan c

tanA =
tan a

sin b

sin a

sin c
× tan c

tan b
=

tan a

sin b

∴ cos c = cos a cos b
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Proposition 10. Spherical Sine Law

Figure 2.7 Figure 2.8

sin a

sinA
=

sin b

sinB
=

sin c

sinC

Proof. In either figure,

sin p = sin b sinA = sin a sinB

∴ sin a

sinA
=

sin b

sinB

Similarly,

sin a

sinA
=

sin b

sinB
=

sin c

sinC

Proposition 11. Spherical Cosine Law As shown in Fig 2.7 and Fig 2.8,

cos a = cos b cos c+ sin b sin c cosA (1)

cos b = cos a cos c+ sin a sin c cosB (2)

cos c = cos a cos b+ sin a sin b cosC (3)

Proof. In either figures,

cos b = cos p cosx (1)

cos a = cos p cos(c− x) (2)
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2) ÷ 1),

cos a

cos b
=

cos(c− x)

cosx

=
cos c cosx+ sin c sinx

cosx
= cos c+ sin c tanx

= cos c+ sin c tan b cosA

∴ cos a = cos b cos c+ sin b sin c cosA

It is similar for the other two formulae.

2.1. Stereographic Projection

For any point P (a, b, c) on the unit sphere a2+b2+c2 = 1, the stereographic projection

of P is P ′(x, y, 0) such that
−−→
NP ′ = k

−−→
NP for some k ∈ R. [See reviewer’s comment

(9)]

(x, y,−1) = k(a, b, c− 1)

∴ k =
1

1− c , x =
a

1− c , y =
b

1− c
∴ P ′

(
a

1− c ,
b

1− c , 0
)

Theorem 12. Any small circles or great circles on the sphere will become a circle
or straight line on the plane via stereographic projection.

Figure 2.9

Proof. Any circle on a sphere can be represented by

x2 + y2 + z2 = 1 (1)

Ax+By + Cz = D (2)
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Let P (x, y, z) be a point on the circle and P ′(x′, y′, 0) be its stereographic projec-
tion, then

x′ =
x

1− z , y′ =
y

1− z

∴ x′2 + y′2 =
x2 + y2

(1− z)2 =
1− z2

(1− z)2 =
1 + z

1− z

∴ z =
x′2 + y′2 − 1

x′2 + y′2 + 1

x =
2x′

x′2 + y′2 + 1

y =
2y′

x′2 + y′2 + 1

Subst. it in (2) [See reviewer’s comment (10)]

2Ax′ + 2By′ + C(x′2 + y′2 − 1) = D(x′2 + y′2 + 1)

(C −D)x′2 + (C −D)y′2 + 2Ax′ + 2By′ − (C +D) = 0

which is an equation of a circle or straight line.

Theorem 13. Stereographic projection is conformal, i.e. angle preserving.

Proof. According to Fig 2.10, due to symmetry, α is equal to β, the angle N on the
plane π1, and since π1 and π2 are parallel, as in Fig 2.11,

NN ′//P ′P ′′ and NN ′′//P ′P ′′′

in 3-dimensional sense,

∴ β = γ

∴ α = γ

[See reviewer’s comment (11)]
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Figure 2.10
Figure 2.11

Theorem 14. Suppose P,Q are diametrically opposite points on the unit sphere,
and P’, Q’ are their stereographic projections respectively, then P’, Q’ are in the
opposite derection about O and

OP ′ ×OQ′ = 1

[See reviewer’s comment (12)]

Proof. As shown in Fig 2.12, since ∠QNP =
π

2
and ∠NOP ′ =

π

2
, then

4NOP ′ ∼ 4Q′ON.

∴ OP ′

NO
=
NO

OQ′

∴ OP ′ ×OQ′ = 1× 1 = 1

Figure 2.12
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Remark 15. Theorem 9 to Theorem 14 are important because if we want to study
the phenomenon on the sphere via stereographic projection, we should know the
connection between them.

3. TRIANGLES

In this section, all A′, B′, . . . represent the stereographic projection of the corre-
sponding points A,B, . . . on the sphere.

Theorem 16. On a unit sphere, the shorteset path from a point A to a great circle
C is the minor arc of the great circle passing through A and perpendicular to C.

Figure 3.1

Proof. WLOG letA be the south pole. By Theorem 12, the stereographic projection
of C is a circle C ′ on the xy-plane. Then as shown in Fig 3.1, by Euclidean geometry,
the distance between A′ and a point B′ on C ′ is minimum when A′B′ is the minor
line segment perpendicular to C ′. So by Theorem 14 the result follows. [See
reviewer’s comment (13)]

Lemma 17. On the unit sphere, any side of an acute spherical 4ABC (i.e. every

angle is smaller than
π

2
) is less than

π

2
.

Proof. In view of stereographic projection, WLOG, let A′ be the origin, B′ lies on
the positive X-axis and C ′ lies in quadrant I. Then B′, C ′ should lie inside the unit
circle, for otherwise, there are just two cases. [See reviewer’s comment (14)]
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Figure 3.2

Case 1. As shown in Fig 3.2 both B′ and C ′ lie on or outside the circle, then by
calculating the area of spherical 4ABC and 4ADE, we have

Area of spherical 4ABC > Area of spherical 4ADE
∠A+ ∠B + ∠C − π > ∠A+

π

2
+
π

2
− π

∠B + ∠C > π

which contradicts the assumption that both ∠B and ∠C are acute.

Figure 3.3

[See reviewer’s comment (15)]

Case 2. Either B′ or C ′ lies on or outside the circle, WLOG, assume B′ lies outside
and C ′ lies inside, then as shown in Fig 3.3, suppose D′, E′ are the stereographic
projections of the diametrically opposite points ofB,C respectively. By Theorem 14
and converse of power chord theorem, B′, C ′, D′, E′ are concyclic, and by Theorem
12, the circle BC ′B′′C ′′ is the stereographic projection of the great circle passing
through B and C. Similarly, by Theorem 12 again, the straight line A′B′ and A′C ′

are the arcs of great circles passing through A,B and A,C respectively. Therefore
the ’triangle’ A′B′C ′ is the stereographic projection of the spherical 4ABC.
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Figure 3.4

As shown in Fig 3.4, since A′B′ ≥ 1 and A′D′ ≤ 1, the mid-point of B′D′ lies in
the right hand side of A′, and since A′C ′ < 1 and A′E′ > 1, the mid-point of C ′E′

lies in quadrant III, then the center O of the circle B′C ′D′E′ must lie in quadrant
IV.

So ∠A′C ′D′ = π
2 + ∠A′C ′O′ > π

2 which contradicts to the assumption. [See
reviewer’s comment (16)]

By Case I and Case II, we get AB,AC <
π

2
. Then by letting B be the south pole

(origin), using the same argument, we can prove that BC <
π

2
.

Theorem 18. Acute spherical triangle For an acute spherical 4ABC, the
inscribed 4PQR with the minimum perimeter is the ‘orthic’ spherical 4ABC.

[See reviewer’s comment (17)]

Proof. As shown in Fig 3.5, on the sphere, we reflect the spherical triangle ABC
about great circles AB and AC. Let P be a point on BC, P ′ and P ′′ be its images,
then ∠P ′AP ′′ = 2∠A < π and

AP = AP ′ = AP ′′

Figure 3.5
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By Lemma 17, AB,BP <
π

2
, then by spherical cosine law, [See reviewer’s comment

(18)]

cosAP = cosAB cosBP + sinAB sinBP cosB > 0

∴ AP <
π

2
By spherical cosine law again,

cosP ′P ′′ = cos2AP + sin2AP cos 2A

= cos2AP + sin2AP (1− 2 sin2A)

= 1− 2 sin2AP sin2A

Then P ′P ′′ is minimum

⇐⇒ 1− cosP ′P ′′ is minimum

⇐⇒ sin2AP is minimum

⇐⇒ sinAP is minimum (by previous observation AP <
π

2
⇐⇒ AP is minimum

⇐⇒ AP ⊥ BC (by Theorem 16)

Then as shown in Fig 3.6, since P ′RQP ′′ is a great circle,

Figure 3.6

∠ARQ = ∠BRP , ∠AQR = ∠CQP
Since the spherical triangle AP ′P ′′ is isosceles,

∠AP ′P ′′ = ∠AP ′P ′′

∠APR = ∠APQ

∴ ∠BPR =
π

2
− ∠APR =

π

2
− ∠APQ = ∠CPQ
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Then reflectR aboutBC andAC toR′ andR′′ respectively. Since ∠BPR = ∠CPQ
and ∠AQR = ∠CQP , R′PQR′′ is a great circle, then the spherical triangle CR′R′′

is isosceles, imply

∠CR′R′′ = ∠CR′′R′

So we get

∠CRP = ∠CRQ
∴ CR ⊥ AB

Similarly, BQ ⊥ AC.

Lemma 19. Angle-side Relationship in spherical Triangle If triangle ABC
is a spherical triangle with ∠A ≤ ∠B ≤ ∠C, and let BC = a, CA = b, AB = c
then a ≤ b ≤ c.

Proof. There are only four cases.

Case 1. 0 < ∠A ≤ ∠B ≤ ∠C ≤ π

2
(No obtuse angle)

Since sine function is strictly increasing in [0,
π

2
],

0 < sinA ≤ sinB ≤ sinC

Then by spherical sine law, [See reviewer’s comment (19)]

0 < sin a ≤ sin b ≤ sin c

∴ a ≤ b ≤ c (By Lemma 17)

Case 2. 0 < ∠A ≤ ∠B ≤ π

2
≤ ∠C < π (One obtuse angle)

In view of stereograhic projection, let A′ be the origin, suppose on the contrary
that c ≤ b, then there are 3 cases.

Case 2.1.
π

2
≤ c ≤ b

As shown in Fig 3.7, since c ≤ b, we have A′B′ ≤ A′C ′.

Let D,E be the diametrically opposite points of B,C respectively, and let PQ,RS
be the perpendicular bisectors of B′D′, C ′E′ respectively. Then as shown in Fig
3.8,

A′P =
1

2

(
A′B′ − 1

A′B′

)

≤ 1

2

(
A′C ′ − 1

A′C ′

)

= A′R
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Therefore by Euclidean geometry of right-angled triangle,

A′P ≤ A′R < A′S

[See reviewer’s comment (20)]

Therefore O is below A′B′.

Then ∠B is obtuse which contradicts the assumption.

Figure 3.7 Figure 3.8

Figure 3.9 Figure 3.10

Case 2.2. c ≤ π

2
≤ b

As shown in Fig 3.9, this is just the case in the proof of Lemma 17 (case 2), which
results in contradiction to the assumption.

Case 2.3. b ≤ c ≤ π

2
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As shown in Fig 3.10, Fig 3.11, by similar argument as Case 2.1 [See reviewer’s
comment (21)], we get

A′R ≤ A′P ≤ A′Q

then O is below A′C ′, and ∠C is acute which contradict to the assumption.

By combining the Cases 2.1 to 2.3, we get b < c.

Lastly, we need to prove a ≤ b. Suppose in the contrary that b < a, we have 3 more
cases:

Figure 3.11

Case 2.4.
π

2
≤ b ≤ a

By calculating the area of spherical triangle ABC, we get ∠A + ∠B > π which
contradicts to the assumption.

Case 2.5. b <
π

2
< a

Figure 3.12 Figure 3.13
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As shown in Fig 3.12, since 0 < ∠A ≤ ∠B ≤ π

2
, O must lie in below C ′B′ and

A′D′, then by Euclidean geometry of right-angled triangle,

OP < OT < OR

Then

sin∠OA′P =
OP

OA′
<

OR

OB′
= sin∠OB′R

∴ ∠OA′P < ∠OB′R
∴ ∠A =

π

2
− ∠OA′P >

π

2
− ∠OB′R = ∠B

which contradicts to the assumtion.

Case 2.6. b < a <
π

2

By spherical sine law, sin b < sin a implies sin∠B < sin∠A, then ∠B < ∠A which
contradicts to the assumption.

By combining the cases 2.4 to 2.6, we get a ≤ b and so a ≤ b < c.

Case 3. 0 0 < ∠A ≤ π
2 < ∠B ≤ ∠C < π (Two obtuse angles)

As shown in Fig 3.14, the spherical triangle DBC is the supplementary spherical
4ABC with respect to A.

Figure 3.14

Then by Lemma 17 and Case 1, ∠DCB ≤ ∠DBC <
π

2
and ∠BDC = ∠BAC ≤ π

2

imply

a ≤ π

2
, e ≤ d < π

2

π − e ≥ π − d > π

2

∴ a ≤ π

2
< b ≤ c

Case 4.
π

2
< ∠A ≤ ∠B ≤ ∠C < π (Three obtuse angles)
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As shown in Fig 3.15, the spherical triangle DBC is the supplementary spherical
triangle ABC with respect to A.

Figure 3.15

Since the spherical triangle DBC has only one obtuse angle and

∠DCB ≤ ∠DBC <
π

2
,

by Case 2, e ≤ d and so c ≥ b.

Using the similar argument, if we consider the supplementary spherical triangle
ABC with respect to C, we get a ≤ b.

Theorem 20. Spherical triangle with 1 obtuse angle For a spherical triangle
ABC with acute ∠A,∠B and obtuse ∠C, the inscribed spherical triangle PQR with
minimum perimeter does not exist and it will degenerate to the altitude from C to
AB.

Proof. Let P be a point on BC and P ′, P ′′ be the reflection points of P about AB
and AC respectively.

Then since ∠P ′BC = 2∠B < π and ∠BCP ′′ = 2∠C > π, the shortest path from
P ′ to P ′′ is (P ′ → C → P ′′), which is equivalent to the spherical triangle PCR, as
shown in Fig 16. [See reviewer’s comment (22)]

Then by spherical triangle inequality, 2CR must shorter than the perimeter of
spherical 4PCR, and by Theorem 16, CR is minimum when CR ⊥ AB, which is
the degenerated case.

So it will be minimum when AP is minimum, that is AP ⊥ BC.
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Figure 3.16

Theorem 21. Spherical triangle with 2 obtuse angles For a spherical triangle
ABC with acute ∠A and obtuse ∠B, ∠C, then the inscribed spherical triangle PQR
with minimum perimeter does not exist and it will degenerate to the side BC, the
side included by the two obtuse angles.

Figure 3.17

Proof. Let P be a point on BC, and P ′, P ′′ be the reflection point of P about
AB,AC respectively. Then as shown in Fig 3.17, since ∠P ′BC = 2∠B > π and
∠BCP ′′ = 2∠C > π, the shortest path from P ′ to P ′′ is (P ′ → B → C →
P ′′) which is equivalent to the length 2BC. So the inscribed triangle PQR with
minimum perimeter is degenerated to side BC.

Theorem 22. Spherical triangle with 3 obtuse angles For a spherical triangle
ABC with three obtuse angles, the inscribed spherical triangle PQR with minimum
perimeter does not exist and it will degenerate to the side opposite to the smallest
angle.
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Figure 3.18

Proof. Let P be a variable point on BC, and P ′P ′′ be the reflecting points, then
since ∠P ′AP ′′ = 2∠A > π, then P ′P ′′ lies outside the spherical triangle ABC. So
by spherical triangle inequality, the shortest path from P ′ to P ′′ must be (P ′ →
A→ P ′′) or (P ′ → B → C → P ′′), which corresponds to the degenerated side AP
or BC.

And as shown in Fig 3.18, either α or β will less than or equal to
π

2
, then by Lemma

19, AB < AP or AC < AP .

Therefore AP is minimum when P coincides with B or C. Then compare AB,AC
and BC, by Lemma 19 again, the degenerated inscribed spherical triangle with
minimum perimeter is the side opposite to the smallest angle.

4. Spherical Quadrilateral

In Euclidean geometry, it’s proved that the inscribed quadrilateral with minimum
perimeter exists iff the quadrilateral is cyclic and the centre of the circumcircle is
inside the quadrilateral, as stated in the following theorem.

Theorem 23. Quoted as Reference [2]

If ABCD is a Euclidean quadrilateral with

(i) ∠A+ ∠C = π and the centre of the circumcircle is inside the quadrilateral.
Then the inscribed quadrilateral with minimum perimeter exists and has infi-
nite solutions. [See reviewer’s comment (23)]

(ii) ∠A+ ∠C = π and the centre of the circumcircle is outside the quadrilateral.
Then the inscribed quadrilateral with minimum perimeter does not exist and it
will degenereate as a triangle passing through the two adjacent obtuse angles.

(iii) ∠A+ ∠C > π and ∠A ≥ ∠C
Then the inscribed quadrilateral with minimum perimeter does not exist and
it will degenerate as a triangle passing through A or the line AC.

Proof. Omitted.
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Figure 4.1 Figure 4.2

However, in spherical geometry, when a quadrilateral is reflected three times, the
corresponding sides will never be parallel, as shown in Fig 4.1. And in this reflection,
we are just interested in sides of reflection, as shown in Fig 4.2, and we call this
zig-zag path the ‘expanded form’ of the spherical quadrilateral. Moreover, we call
the 2-gon NS the ‘expanded 2-gon’ of the spherical quadrilateral. [See reviewer’s
comment (24)]

Theorem 24. In a 2-gon NS, AB and A′B′ are two equal segments on the 2 sides.
[See reviewer’s comment (25)]

(a) If P, P ′ are variable points on AB,A′B′ respectively such that AP = A′P ′, as
shown in Fig 4.3, then PP ′ will be minimum when it coincides with AA′ or
BB′.

(b) If P, P ′ are variable points on AB,A′B′ respectively such that AP = B′P ′,
as shown in Fig 4.4, then PP ′ will be minimum when NP = NP ′, or the
degenerated solution AB′or BA′.

.

Figure 4.3 Figure 4.4
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Proof.

(a) By spherical cosine law,

cosPP ′ = cos(a+ x) cos(b+ x) + sin(a+ x) sin(b+ x) cos θ

d cosPP ′

dx
= − cos(a+ x) sin(b+ x)− sin(a+ x) cos(b+ x)

+ sin(a+ x) cos(b+ x) cos θ + cos(a+ x) sin(b+ x) cos θ

= (cos θ − 1) sin(a+ b+ 2x)

And since 0 < θ < π and a + x, b + x < π, then cos θ − 1 < 0 and
0 < a+ b+ 2x < 2π.

a+ b+ 2x a+ b+ 2x < π a+ b+ 2x = π a+ b+ 2x > π

d cosPP ′

dx
- 0 +

So PP ′ is maximum

⇐⇒ cosPP ′ is minimum

⇐⇒ a+ b+ 2x = π

⇐⇒ NP +NP ′ = π

⇐⇒ PP ′ is passing through the centre of the 2-gon.

Then PP ′ is minimum when it conincides with AA′ or BB′. [See reviewer’s
comment (26)]

(b) By spherical cosine law,

cosPP ′ = cos(a− x) cos(b+ x) + sin(a− x) sin(b+ x) cos θ

d cosPP ′

dx
= sin(a− x) cos(b+ x)− cos(a− x) sin(b+ x)

+ sin(a− x) cos(b+ x) cos θ + cos(a− x) sin(b+ x) cos θ

= (cos θ + 1) sin(a− b− 2x)

Similarly, since 0 < θ < π and 0 < a − x, b + x < π, then cos θ + 1 > 0 and
−π < a− b− 2x < π.

a− b− 2x a− b− 2x < π a− b− 2x = π a− b− 2x > π
d cosPP ′

dx + 0 -

So PP ′ is maximum

⇐⇒ cosPP ′ is minimum

⇐⇒ a− b− 2x = 0

⇐⇒ NP = NP ′
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If x =
(a− b)

2
exceeds the range 0 < x < AB, then PP ′ will be minimum

when it coincides with AB′ or BA′.

Theorem 25. Spherical Quadrilateral with 3 acute angles For a spheri-
cal quadrilateral ABCD with 3 acute angles, the inscribed spherical quadrilateral
PQRS with minimum perimeter does not exist and it will degenerate to the spher-
ical triangle passing through the obtuse angle.

Figure 4.5

[See reviewer’s comment (27)]

Proof. WLOG, let γ be the obtuse angle, and P be a variable point on AP , then
its expanded form is shown in Fig 4.5.

Since ∠DBD′ = 2β < π, we know B is below DD′. Then

∠SDB + ∠SD′B
= π − ∠BDA+ π − ∠BD′A′

= 2π − (∠BDA+ δ + ∠BD′C)

= 2π − 2δ

> π

∴ ∠SDD′ + ∠SD′D
= 2π − 2δ + 2∠BDD′

> π

∴ DD′ lies above the centre of the expanded 2-gon.

By Theorem 24 (a), the variable point P should be as close to A as possible.
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Figure 4.6

However, since ∠ACA′ = 2γ > π, C is below AA′ and then the minimum path must
pass through C. Therefore if we reflect C about AB, BD to get C ′, C ′′ respectively,
as shown in Fig 4.6, then

∠C ′BD = 2β − ∠CBD < 2β < π

and

∠BDC ′′ = 2δ − ∠BDC < 2δ < π

So P,Q are above B,D respectively. Then the degenerated inscribed quadrilateral
is the spherical triangle CPQ.

Theorem 26. Spherical quadrilateral with 2 opposite acute angles and
2 opposite obtuse angles For a spherical quadrilateral ABCD with 2 opposite
acute angles, the inscribed spherical quadrilateral PQRS with minimum perimeter
does not exist and it will degenerate to the diagonal passing through the 2 obtuse
angles.

Proof. WLOG, let α, γ be the opposite obtuse angles, then since β, δ < π, similar
to the proof of Theorem 25, the variable point P should be as close to A as possible.

However, since ∠C ′BD = 2γ > π, C is below AA′, so the minimum path must
pass through C. By symmetry, if we change the role of α, β and γ, then we get
the minimum path must pass through A. So the degenerated inscribed spherical
quadrilateral is the diagonal passing through A and C.

Note that the two cases just stated before have solutions exactly the same as when it
is in Euclidean geometry, as stated in Theorem 23. For the spherical quadrilateral,
we have 3 more cases:

Case 1. 2 adjacent acute angles and 2 obtuse angles

Case 2. 1 angle and 3 obtuse angles

Case 3. 4 obtuse angles
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However, for these types of spherical quadrilaterals, the solutions inscribed spherical
triangle with minimum perimeter are different from the cases in Euclidean geome-
try, as stated in Theorem 23, even though their are cyclic spherical quadrilateral.

Theorem 27. A spherical quadrilateral ABCD is cyclic iff the sums of the opposite
angles are equal. (i.e. ∠A+ ∠C = ∠B + ∠D, but they must larger than π)

Figure 4.7 Figure 4.8

Proof.
⇒) WLOG, as shown in Fig 4.7, let the centre of the circumcirlce of ABCD be the
origin in the stereographic projection. Then OA = OB = OC = OD.

∴ ∠OAB = ∠OBA,∠OBC = ∠OCB,∠OCD = ∠ODC,∠OAD = ∠ODA

∴ ∠A+ ∠C = (∠OAB + ∠OAD) + (∠OCB + ∠OCD)

= ∠OBA+ ∠ODA+ ∠OBC + ∠ODC
= ∠B + ∠D

⇐) Since any 3 points on a sphere are concyclic, WLOG, let the centre of the
circumcircle of A,B,C be origin in the stereographic projection. Then

OA = OB = OC.

∴ ∠OAB = ∠OBA, ∠OBC = ∠OCB

and since ∠A+ ∠C = ∠B + ∠D,

∴ ∠OAD + ∠OCD = ∠D = ∠ODA+ ∠ODC
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Figure 4.9

If ∠OAD > ∠ODA, then ∠OCD < ∠ODC, by Lemma 19, OA < OD < OC,
which is a contradiction. Similarly ∠OAD < ∠ODA will result in contradiction.
Therefore, ∠OAD = ∠ODA, then OD = OA, A,B,C,D is concyclic.

As we have stated before, the three more cases are different from the Euclidean
cases, even thoungh they are cyclic, solution does not exist. Consider the expanded
form of a cyclic spherical quadrilateral, as shown in Fig 4.9, then α + γ = β + δ.
And we let the area of NABCD′, SABCD′ be A1, A2 respectively, then

A1 = θ + (π − α) + β + (2π − γ) + δ − 3π

= θ − α+ β − γ + δ = θ

A2 = θ + α+ (2π − β) + β + γ + (π − δ)− 3π

= θ + α− β + γ − δ = θ

Then A1 = A2 and so the expanded form of ABCD is almost at the centre of the
expanded 2-gon.

By Theorem 24 (a), since AA′ and DD′ are near to the centre.

We cannot determine whether we need the variable point P to be close
to A or close to D. (*)

Then if we consider another spherical quadrilateral ABCD which α + γ ∼ β + δ,
then it is very similar to a cyclic spherical quadrilateral. So it should have the same
property (*). This is very different from the Euclidean case, as in that case, we need
to make P close to A if α + γ > β + δ and vise versa. But in spherical geometry,
P may need to close to D even if α+ γ > β + δ.

In the following passage, we will state a counter example in each of the three cases.
However, before we do so, we must prove two more theorems about stereographic
projection.

Theorem 28. Let Q be the reflection point of P about the great circle Γ. When
presented in the stereographic projection, Q′ is the inversion point of P ′ with respect
to the circle Γ′.
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Proof. Let P = (x0, y0, z0) and Q = (x, y, z), then as shown in Fig 4.10

−−→
PQ = (x− x0, y − y0, z − z0)

= k(A,B,C)

Figure 4.10 Figure 4.11

∴





x = x0 + kA

y = y0 + kB

z = z0 + kC

So we have

(x0 + kA)2 + (y0 + kB)2 + (z0 + kC)2 = 1

∴ k(2Ax0 + kA2 + 2By0 + kB2 + 2Cz0 + kC2) = 0

k = 0 (rejected) or k = −2(Ax0 +By0 + Cz0)

A2 +B2 + C2

Q = (x0 + kA, y0 + kB, z0 + kC)

Then let Γ be the intersetion of Ax + By + Cz = 0 with the sphere. As shown in
Fig 4.11, by the proof of Theorem 12, we know the equation of Γ′ is

x′2 + y′2 +
2A

C
x′ +

2B

C
y′ − 1 = 0

(
x′ +

A

C

)2

+

(
y′ +

B

C

)2

=
A2 +B2 + C2

C2

∴ Center of Γ′ =

(
−A
C
,−B

C

)

∴ Radius of Γ′ =

√
A2 +B2 + C2

C2
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and we have

P ′ =

(
x0

1− z0
,

y0
1− z0

)

Q′ =

(
x0 + kA

1− z0 − kC
,

y0 + kB

1− z0 − kC

)

Then

−−→
OP ′ =

(
Cx0 +A−Az0
C(1− z0)

,
Cy0 +B −Bz0
C(1− z0)

)

−−→
OQ′ =

(
x0 + kA

1− z0 − kC
+
A

C
,

y0 + kB

1− z0 − kC
+
B

C

)

=

(
Cx0 +A−Az0
C(1− z0 − kC)

,
Cy0 +B −Bz0
C(1− z0 − kC)

)

Then clearly O, P ′ and Q′ are collinear, also we have

OP ′ ×OQ′ =
−−→
OP ′ ·

−−→
OQ′

=
(Cx0 +A−Az0)2 + (Cy0 +B −Bz0)2

C2(1− z0)(1− z0 − kC)

=
C2(1 + z0) + 2ACx0 + 2BCy0 + (A2 +B2)(1− z0)

C2(1− z0 − kC)

=
A2 +B2 + C2 − z0(A2 +B2 + C2) + 2C(Ax0 +By0) + 2C2z0

C2(1− z0 − kC)

=
A2 +B2 + C2 − z0(A2 +B2 + C2) + 2C(Ax0 +By0 + Cz0)

C2(1− z0 − kC)

=
(A2 +B2 + C2)(1− z0 + 2C(Ax0+By0+Cz0)

A2+B2+C2 )

C2(1− z0 − kC)

=
A2 +B2 + C2

C2

∴ Q′ is the inversion point of P ′ with respect to Γ′.

Theorem 29. Distance formula on stereographic projection Let point A′(x1, y1)
and point B′(x2, y2) be the stereographic projection of A and B on the sphere re-
spectively. Then the minor arc AB on the sphere is

2 arctan

√
(x1 − x2)2 + (y1 + y2)2

(1 + x1x2 + y1y2)2 + (x1y2 − x2y1)2
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Proof. By Theorem 12,

A =

(
2x1

x21 + y21 + 1
,

2y1
x21 + y21 + 1

,
x21 + y21 − 1

x21 + y21 + 1

)

B =

(
2x2

x22 + y22 + 1
,

2y2
x22 + y22 + 1

,
x22 + y22 − 1

x22 + y22 + 1

)

cosAB = |−→OA||−−→OB| cosAB

=
−→
OA · −−→OB

=
4x1x2 + 4y1y2 + (x21 + y21 − 1)(x22 + y22 − 1)

(x21 + y21 + 1)(x22 + y22 + 1)

Since cosAB =
1− tan2 AB

2

1 + tan2 AB
2

,

tan2 AB

2
=

1− cosAB

1 + cosAB

=
2(x21 + y21) + 2(x22 + y22)− 4x1x2 − 4y1y2
2(x21 + y21)(x22 + y22) + 2 + 4x1x2 + 4y1y2

=
(x1 − x2)2 + (y1 + y2)2

(1 + x1x2 + y1y2)2 + (x1y2 − x2y1)2

∴ AB = 2 arctan

√
(x1 − x2)2 + (y1 + y2)2

(1 + x1x2 + y1y2)2 + (x1y2 − x2y1)2

In the following, we will use GeoGebra to present the counter examples. All the
spherical quarilaterals presented are almost cyclic, as stated before.

Counter Example 30. 2 adjacent acute angles and 2 obtuse angles (Attached file:
counter example 1.ggb)

By using Theorem. 28, we can construct A′′ and A′′′ which are the reflection points
of A′ about B′C ′ and C ′D′ respectively. Similarly, we can construct B′′ and B′′′.
By using distance formula, the spherical distance of B′′B′′′ is shorter than that of
A′′A′′′ although α+ γ > β + δ.
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Figure 4.12

Counter Example 31. 1 acute angle and 3 obtuse angles (Attached file: counter
example 2.ggb)

By using Theorem 28, we can construct A′′ and A′′′ which are the reflection points
of A′ about B′C ′ and C ′D′ respectively. By using distance formula, the spherical
distancee of 2B′D′ is shorter than that of A′′A′′′ although α+ γ > β + δ.

Figure 4.13
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Counter Example 32. 4 obtuse angles (Attached file: counter example 3.ggb)

By using distance formula, the spherical distancee of B′D′ is shorter than that of
A′C ′ although α+ γ > β + δ.

Theorem 33. Spherical quadrilateral with 2 adjacent acute angles and 2
obtuse angles For a spherical quadrilateral ABCD with 2 adjacent acute angles
and 2 obtuse angles, the inscribed spherical quadrilateral PQRS with minimum
perimeter does not exist and it will degenerate to the spherical triangle passing
through one or both of the obtuse angles.

Proof. WLOG, let β, γ be the obtuse angles, and its expanded form is shown in
Fig 4.15. By property (*), we cannot determine whether we need the variable point
close to A or D. And since ∠DBD′ = 2β,∠ACA′ = 2γ which are larger than π,
we know B is above DD′ and C is below AA′, the shortest path must pass through
B or C. Then we need to compare the length of the shortest path passing through
B with that passing through C.

Let us use the point C as an example, we have an algorithm to find out the shortest
path passing through C. As shown in Fig 4.16, if we reflect C about AB,AD to
get C ′, C ′′ respectively, then the spherical triangle AC ′C ′′ is isosceles with vertical
angle 2α, then if we let the base angle be θ, as shown in Fig 4.17, we have

tan θ =
tanx

sin y
, tanα =

tan y

sinx

∴ tan θ tanα =
1

cosx cos y
=

1

cosAC

∴ θ = arctan
1

tanα cosAC
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Figure 4.14

Case 1. ∠ACB > θ

Since ∠ACB > θ = ∠ACP , this is just the original case as shown in Fig 4.16, then
the shortest path is just the triangle passing through C only with

Perimeter = C ′C ′′ = arccos(cos2AC + sin2AC cos 2α)

Case 2. ACB ≤ θ

This is the case shown in Fig 4.18, and the shortest path is the triangle passing
through both B and C with

Perimeter = C ′B +BC ′′

= BC + arccos(cosAB cosAC ′′ + sinAB sinAC ′′ cos∠BAC ′′)
= BC + arccos(cosAB cosAC + sinAB sinAC cos(α+ ∠CAD))

Then we can use similar argument to find out the shortest path passing through B
and compare then to get the solution.

Theorem 34. Spherical quadrilateral with 1 acute angle and 3 obtuse
angles For a spherical quadrilateral with 1 acute angle and 3 obtuse angles, the
inscribed spherical quadrilateral PQRS with minimum perimeter does not exist and
it will degenerate to either one of the following cases: (i) the spherical triangle
passing through the obtuse angle opposite to the acute angle only, (ii)the spherical
triangle passing through two adjacent obtuse angles, (iii) the diagonal passing the
two obtuse angles.
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Proof. WLOG, let α be the acute angle. Similar to the proof in Theorem 4.8, the
shortest path must pass through B,C of both.

Passing through C:

Figure 4.15 Figure 4.16

Figure 4.17 Figure 4.18

Similar to the proof in Theorem 4.8, if we let D to be also an obtuse angle.

Case 1. ∠ACB > θ, ∠ACD > θ

This is the case as shown in Fig 4.16, then the shortest path is the triangle passing
through C only with

Perimeter = C ′C ′′ = arccos(cos2AC + sin2AC cos 2α)

Case 2. ∠ACB ≤ θ, ∠ACD > θ

(If ∠ACB > θ,∠ACD ≤ θ, then we can change the role of B and D to get the
same case.)
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This is the case as shown in Fig 4.18, then the shortest path is the triangle passing
through both B and C with

Perimeter = C ′B +BC ′′

= BC + arccos(cosAB cosAC ′′ + sinAB sinAC ′′ cos∠BAC ′′)
= BC + arccos(cosAB cosAC + sinAB sinAC cos(α+ ∠CAD))

Case 3. ∠ACB ≤ θ,∠ACD ≤ θ

This is the case as shown in Fig 4.19, whether it passes through B or D depends
on the ∠C ′BD and ∠BDC ′′, and we have

∠C ′BD = 2β − ∠CBD
∠BDC ′′ = 2δ − ∠CDB

Figure 4.19 Figure 4.20

Case 3.1. 2β − ∠CBD ≥ π, 2δ − ∠CDB ≥ π

The shortest path is the 4CBD, which must longer than 2BD, where included in
the case of the shortest path passing through B.

Case 3.2. 2β − ∠CBD ≥ π, 2δ − ∠CDB < π

(if 2β − ∠CBD < π, 2δ − ∠CDB ≥ π, then we can change the role of B and D to
get the same case.)

This is just the case in Fig 4.19, then the shortest path is the triangle passing
throught both B and C with

Perimeter = C ′B +BC ′′

= BC + arccos(cosAB cosAC ′′ + sinAB sinAC ′′ cos∠BAC ′′)
= BC + arccos(cosAB cosAC + sinAB sinAC cos(α+ ∠CAD))
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Case 3.3. 2β − ∠CBD < π, 2δ − ∠CDB < π

As shown in Fig 4.20, since ∠ACB ≤ θ, ∠ACD ≤ θ, we know that B,D must lie
above C ′C ′′, let R be the intersection of C ′D and AB. Since ∠C ′BD < π, B must
lie in below R. Then consider BC ′′, since ∠BDC ′′ < π, D must lie in below BC ′′,
but by construction, D must lie above BC ′′, lead to a contradiction.

Passing through B:

Let B′, B′′ be the reflection of B about AD,CD respectively. Then since δ is obtuse,
∠B′DB′′ = 2δ > π. And since ∠B′AC = 2α − ∠BAC < π, the shortest path will
not pass through A. Therefore the shortest path is (B → D → B) or (B → C → B)
where the path will touch a point on AD, and this case can be included in the case
passing through C. So in this case, the perimeter of the shortest path is 2BD.

After finding the perimeter of the shortest path passing through B or C, we can
compare the result of them to get the solution.

Theorem 35. Spherical quadrilateral with 4 obtuse angles For a spherical
quadrilateral with 4 obtuse angles, the inscribed spherical quadrilateral PQRS with
minimum perimeter does not exist and it will degenerate to one of the diagonals.

Proof. Since all the four angles are obtuse, and similarly to the proof of Theorem
33, we know that the shortest path must pass through B or C. Let us use B as an
example, let B′, B′′ be the reflection of B about AD, CD respectively, then since
δ is obtuse, ∠B′DB′′ = 2δ > π. Therefore the shortest path is (B → D → B) or
(B → A → C → B), but this path is obviously longer than 2AC. So we can just
compare the length of diagonal to get the solution.

5. N-gon

Figure 5.1

Definition 36. An inscribed spherical polygon of a spherical polygon, where they
have the same number of sides, is called a closed path of light iff all the angles of
incidence are equal to the angles of reflection. (As shown in Fig 5.1)
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Theorem 37. For a (2n + 1)-sided spherical polygon, an inscribed (2n + 1)-sided
spherical polygon exists and having minimum perimeter iff it is a closed path of
light.

[See reviewer’s comment (28)]

Figure 5.2

Proof.
⇒) Suppose the inscribed (2n+1)-sided polygon exists and has minimum perimeter,
then we consider the expanded form of the original polygon together with the
inscribed polygon, as shown in Fig 5.2. Since it has minimum perimeter, it must be
a great circle passing through all the sides in the expanded form. Then for the sides
A1A2, A2A3, . . . , A2nA2n+1, by vertically opposite angles, the angles of incidence
are equal to the angles of reflection. And by Theorem 24 (b), PP ′ is minimum
when NP = NP ′, so ∠NPP ′ = ∠NP ′P , which are the angle of incidence and
angle of reflection on the side A1A2n+1.

⇐) Suppose there exists a closed path of light, then when we consider the expanded
form, use the same notation as in Fig 5.2, the equality of the angles of incidence
and the angles of reflection imply PP ′ is a great circle and ∠NPP ′ and ∠NP ′P ,
this means NP = NP ′, then by Theorem 24 (b) again, it is the inscribed polygon
with minimum perimeter.

For a 2n-sided spherical polygon, the solution is different from the Euclidean case,
because the inscribed 2n-sided spherical polygon will never exist, even

n∑

k=1

A2k−1 =
n∑

k=1

A2k

or even it is a regular spherical polygon! As stated in the following theorem,

Theorem 38. 2n-sided spherical polygon For a 2n-sided spherical polygon, an
inscribed 2n-sided spherical polygon with minimum perimeter does not exist.
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Figure 5.3

Proof. Consider the expanded form of the 2n-sided polygon, as shown in Fig 5.3.
Since there are no parallel great circle in spherical geometry, A1A2n and A′1A

′
2n are

not parallel. Then by Theorem 24 (a), the variable point P must close to A1 or close
to A2n, so the shortest path must pass through at least one of the vertice, therefore
the inscribed spherical polygon with minimum perimeter does not exist.

6. Conclusion

In spherical geometry, the solution of cases in acute triangles and one-obtuse-angle
triangles will be similar to its solution in Euclidean geometry. However, on a sphere,
a spherical triangle is able to consist more than one obtuse angle, the solution will be
degenerated and approach to the side opposite to the smallest angle. [See reviewer’s
comment (29)]

For the spherical quadrilaterals, the solution will be very different from the Eu-
clidean case, as it will never have an inscribed spherical quadrilateral with minimum
perimeter. However, when we consider spherical quadrilateral in a small scale, such
as a city compared with the Earth, then the case will be similar to the Euclidean
geometry.

For example, if ABCD is a small cyclic spherical quadrilaterals, then by the dis-
cussion after Theorem 27, the expanded form of the spherical quadrilateral will
lie amost in the middle of the expanded 2-gon as shown in Fig 6.1 and Fig 6.2.
And we can see that the two corresponding sides AD and A′D′ are almost parallel.
Therefore, the variable point P and its image P ′ are having almost equal distance
when P is sliding from A to D. This is similar to the case in Euclidean geometry.
Then if A,B,C,D is not cyclic, by using the same notation as in the discussion
after Theorem 27 again, we know A2−A1 = 2(α+β−γ− δ). But since it is small,
the expanded form will lie near the pole of the expanded 2-gon as shown in Fig 6.3.
So A2 will tends to 2θ, and A1 will tends to 0. So, α+β− γ− δ ∼ θ, this is similar
to the Euclidean case.
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Figure 6.1
Figure 6.2

Lastly, we know that the Playfair’s axiom in Euclidean geometry is different to
that in spherical geometry, stating that there is no line can be drawn through any
point not on a given line parallel to the given line on a sphere, and our conclusion
on the 2n-sided spherical polygon having the similar result. Also we know that
this playfair’s axiom in hyperbolic geometry is different from that in spherical and
Euclidean geometry, so we can believe this problem can be extended to hyperbolic
geometry with other different properties in the furture.

Figure 6.3
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Reviewer’s Comments

Given an acute triangle, does there exist an inscribed triangle with minimum
perimeter? This is Fagnano’s Problem, proposed by Giovanni Fagnano in 1755.
The answer is affirmative, and such a triangle is the orthic triangle, whose vertices
are the feet of perpendiculars dropped from the three vertices of the given trian-
gle to the respective corresponding sides. Inspired by this problem, the authors of
this paper under review investigate a number of generalizations of Fagnano’s Prob-
lem in the context of spherical geometry. They first review some basic spherical
geometry/trigonometry, followed by their investigation of Fagnano’s Problem for
spherical triangles. They show, by means of the principle of light reflection, that if
the spherical triangle has three acute angles then there exists an inscribed spheri-
cal triangle with minimum perimeter. However, if at least one angle of the given
spherical triangle becomes obtuse then the desired inscribed triangle will degener-
ate into a segment of a great circle and thus Fagnano’s Problem in this situation
admits no solutions. The authors go on to analyse in detail Fagnano’s Problem
for spherical quadrilaterals in various cases (categorized by the acuteness of the
angles of the quadrilaterials) by using the so-called expanded form, which is a path
obtained by reflecting the given quadrilateral. They show that degeneration of the
desired inscribed quadrilateral occurs and so there are no solutions. Finally the
general case of spherical n-gons is studied and the authors carry over the expanded
form technique to show that solutions exist when n is odd whereas degeneration
occurs and thus no solutions exist when n is even. They also point out the possible
research direction in the context of hyperbolic geometry.

In general the paper is well-organized. The authors give a good introduction by
stating clearly the problem they would like to address and summarizing the struc-
ture of the paper. After proving a result of Fagnano’s Problem for a spherical
quadrilateral, the authors provide comparisons of this result with its analogue in
the Euclidean case. In this way they give the readers an idea what makes the
spherical Fagnano’s Problem interesting. The conclusion is also well-written, and
they relate their results in spherical geometry to those in Euclidean geometry by
considering very small quadrilaterals. However, this paper is riddled with various
issues in terms of clarity and grammar. There is a lack of connecting paragraphs
between theorems/lemmata explaining what the authors want to do next. Very
often some terms and notations are not defined or explained in the outset. The
most notable example is that throughout the whole paper, they have never defined
what orthic triangles mean! Besides many of their results concern the degeneration
of the inscribed spherical triangles/quadrilaterals, but they never explain how this
degeneration occurs when some vertices of the given triangle/quadrilateral become
obtuse. It would be helpful if they could provide a step-by-step illustration of this
degeneration process. Other issues of relatively minor nature include absence of
suitable commas or full stops after lines of displayed equations and inconsistent
way of highlighting terminology they would like to define (for example, they un-
derline the terminology to be defined whereas in Definition 1, while they use bold
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type to highlight the terms ‘expanded form’ and ‘expanded 2-gon’). The following
are specific comments on the aforementioned issues.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Change the first sentence of the second paragraph to ‘Now we wonder whether
the result will remain unchanged when the triangles are on a sphere.’

3. The authors should define orthic triangles.
4. The authors should either offer more explanations to the statement ‘...it will

degenerate to twice of the altitude from the obtuse angle’, or replace it with
a more concise statement without going into details as they should leave the
details in the latter sections rather than in the introduction.

5. The meaning of ‘otherwise, it is a small circle’ is not clear. By using the word
‘otherwise’ what conditions in the first part of Definition 1 do the author
trying to negate? They could have said something along the line ‘a small
circle is the intersection of a sphere with a plane not containing the center’.

6. The authors should define ‘trihedral angle’, though I can guess its meaning
from the picture.

7. The authors implicitly used sine law to get that OA = OC. They should have
pointed that out.

8. The reviewer believes the authors are assuming that the spherical triangle is
right-angled, but they fail to mention that.

9. The authors should define N , though one can easily guess that it means the
north pole of the sphere.

10. Change ‘Subst. it in (2)’ to ‘substitute the above equations to’. Never use
unexplained abbreviations.

11. The authors should provide more explanation in the proof and more details of
Fig. 2.10 which illustrates the proof. What are the two curves which intersect
at N and P? What kind of symmetry is involved and why are α and β equal?
What is the plane π2? It seems to the reviewer that the proof is too short to
be a correct one.

12. The reviewer suggests that the authors use ‘·’ in lieu of ‘×’, for one may easily
mistake × for vector cross product in this formula.

13. It seems that the proof is predicated on the fact that stereographic projection
preserves minimum distances, which the authors fail to mention.

14. It is a good idea to mention that the image of great circles through A′ under
stereographic projection is a straight line, as it is used often in the proof.

15. The authors should mention that they use Theorem 13 about the conformal
property of stereographic projection. Besides, they should also give a reference
about the formula for the area of a spherical triangle. Commas should be
added to each line of displayed inequality.

16. The reviewer thinks by ∠A′C ′D′ the authors actually mean ∠A′C ′D.
17. Again, the authors should define ‘orthic’.
18. Change ‘BP < π

2 , then by spherical cosine law’ to ‘BP < π
2 . By spherical

cosine law’.
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19. The authors should cite Proposition 9, which is the spherical sine law, for the
convenience of the readers.

20. The authors should define S.
21. Change ‘similar argument as...’ to ‘an argument similar to that in Case 2.1’.
22. The reviewer believes by ‘which is equivalent to the spherical triangle PCR’

the authors mean ‘which is the perimeter of the spherical triangle PCR.
23. The sentence does not read well (it does not make sense that ‘the inscribed

quadrilateral has infinite solutions’). It is better to change it to ‘Then there
are infinite many inscribed quadrilaterals with minimum perimeter’.

24. The reviewer suggests that the authors point out what makes the Fagnano’s
Problem in the planar and spherical case admit different solutions.

25. While the authors let AB and A′B′ be the two equal segments of two great
circles on the 2 sides, in Fig. 4.1 these two segments are denoted AD and
A′D′. They should fix this inconsistency.

26. It is not clear to the reviewer how the statement in the second last line implies
the statement in the last line.

27. The labeling of the four vertices of the quadrilateral ABCD is not in the right
order.

28. Change ‘...spherical polygon exists and having minimum perimeter iff...’ to
‘spherical polygon with minimum perimeter exists iff...’.

29. Change ‘a spherical triangle is able to consist more than one obtuse angle,
the solution...’ to ‘there may be more than one obtuse angle in a spherical
triangle. In this case, the solution...’.


